Diversity of phytoplankton in three eutrophic and two mesotrophic lakes in Denmark was determined by microscopic and HPLC pigment analyses to identify and quantify potential saxitoxin (STX) producing cyanobacteria. Potential dominant STX-producers were identified to the filamentous genera Dolichospermum, Cuspidothrix, Phormidium and Planktolyngbya. Presence of STX production was documented by extraction of five intracellular STXs that included (in declining concentration in the cyanobacteria) dc-neo-STX, neo-STX, dc-STX, STX and GTX. Total concentrations of the five STXs varied from 9 to 142 fg per potential STX producer, corresponding to 87 to 985 ng L in the lakes. For molecular detection of the STX-producers, a quantitative PCR method was developed by design of a new robust primer set with broad coverage to target the sxtA gene that is common to all STX-producing cyanobacteria. After validation, copy numbers of the sxtA gene were determined to vary from about 10 (mesotrophic lakes) to 10 per mL (the most eutrophic lake). A moderate but significant correlation was observed between abundance of the sxtA copies and concentrations of the five intracellular STXs. The qPCR assay was found to be a rapid and robust procedure for quantification of STX producers. Saxitoxin and its analogs appeared not to cause health concerns in the lakes, but commercial fishing for pike perch in the most eutrophic lake should be monitored to test for food web accumulation of STXs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hal.2020.101966 | DOI Listing |
Sci Total Environ
January 2025
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada. Electronic address:
Mercury (Hg) and persistent organic pollutant (POP) accumulation among species and biomagnification through food webs is typically assessed using stable isotopes of nitrogen (δN) and carbon (δC) in bulk (whole) tissues. Yet, bulk isotopic approaches have limitations, notably from the potential overlap of isotope values from different dietary sources and from spatial variation in source (baseline) signals. Here, we explore the potential of fatty acid carbon isotopes (FA δC) to (1) evaluate the trophic structure of a marine food web, (2) distinguish feeding patterns among four marine mammal consumers, (3) trace contaminant biomagnification through a food web, and (4) explain interspecific variation in contaminants among high-trophic position predators.
View Article and Find Full Text PDFWater Res
December 2024
Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, C.F. Møllers Allé, building 1131, DK-8000, Aarhus, Denmark; Sino-Danish Centre for Education and Research, Beijing, 100190, China; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and implementation, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
Terrestrial dissolved organic matter (DOM) is potentially reactive and, upon entering lake ecosystems, can be readily degraded to low-molecular-weight organic matter and dissolved CO. However, to date, there has been limited research on the links between long-term variation in the composition of DOM and CO emissions from lakes. Lake Taihu is a large, shallow, and hyper-eutrophic lake where DOM composition is strongly influenced by inputs from the rivers draining cultivated and urbanized landscapes.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark.
Cytochrome P450s of the CYP79 family catalyze two N-hydroxylation reactions, converting a selected number of amino acids into the corresponding oximes. The sorghum genome (Sorghum bicolor) harbours nine CYP79A encoding genes, and here sequence comparisons of the CYP79As along with their substrate recognition sites (SRSs) are provided. The substrate specificity of previously uncharacterized CYP79As was investigated by transient expression in Nicotiana benthamiana and subsequent transformation of the oximes formed into the corresponding stable oxime glucosides catalyzed by endogenous UDPG-glucosyltransferases (UGTs).
View Article and Find Full Text PDFClin Microbiol Infect
December 2024
Department of Genetics, University of Cambridge, Cambridge, UK. Electronic address:
Ecol Lett
December 2024
Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA.
Identifying the scaling rules describing ecological patterns across time and space is a central challenge in ecology. Taylor's law of fluctuation scaling, which states that the variance of a population's size or density is proportional to a positive power of the mean size or density, has been widely observed in population dynamics and characterizes variability in multiple scientific domains. However, it is unclear if this phenomenon accurately describes ecological patterns across many orders of magnitude in time, and therefore links otherwise disparate observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!