Background: The efficient regenerative abilities at larvae stages followed by a non-regenerative response after metamorphosis in froglets makes Xenopus an ideal model organism to understand the cellular responses leading to spinal cord regeneration.
Methods: We compared the cellular response to spinal cord injury between the regenerative and non-regenerative stages of Xenopus laevis. For this analysis, we used electron microscopy, immunofluorescence and histological staining of the extracellular matrix. We generated two transgenic lines: i) the reporter line with the zebrafish GFAP regulatory regions driving the expression of EGFP, and ii) a cell specific inducible ablation line with the same GFAP regulatory regions. In addition, we used FACS to isolate EGFP cells for RNAseq analysis.
Results: In regenerative stage animals, spinal cord regeneration triggers a rapid sealing of the injured stumps, followed by proliferation of cells lining the central canal, and formation of rosette-like structures in the ablation gap. In addition, the central canal is filled by cells with similar morphology to the cells lining the central canal, neurons, axons, and even synaptic structures. Regeneration is almost completed after 20 days post injury. In non-regenerative stage animals, mostly damaged tissue was observed, without clear closure of the stumps. The ablation gap was filled with fibroblast-like cells, and deposition of extracellular matrix components. No reconstruction of the spinal cord was observed even after 40 days post injury. Cellular markers analysis confirmed these histological differences, a transient increase of vimentin, fibronectin and collagen was detected in regenerative stages, contrary to a sustained accumulation of most of these markers, including chondroitin sulfate proteoglycans in the NR-stage. The zebrafish GFAP transgenic line was validated, and we have demonstrated that is a very reliable and new tool to study the role of neural stem progenitor cells (NSPCs). RNASeq of GFAP::EGFP cells has allowed us to clearly demonstrate that indeed these cells are NSPCs. On the contrary, the GFAP::EGFP transgene is mainly expressed in astrocytes in non-regenerative stages. During regenerative stages, spinal cord injury activates proliferation of NSPCs, and we found that are mainly differentiated into neurons and glial cells. Specific ablation of these cells abolished proper regeneration, confirming that NSPCs cells are necessary for functional regeneration of the spinal cord.
Conclusions: The cellular response to spinal cord injury in regenerative and non-regenerative stages is profoundly different between both stages. A key hallmark of the regenerative response is the activation of NSPCs, which massively proliferate, and are differentiated into neurons to reconstruct the spinal cord. Also very notably, no glial scar formation is observed in regenerative stages, but a transient, glial scar-like structure is formed in non-regenerative stage animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7852093 | PMC |
http://dx.doi.org/10.1186/s13064-021-00152-2 | DOI Listing |
Calcif Tissue Int
January 2025
Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK.
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.
View Article and Find Full Text PDFChilds Nerv Syst
January 2025
Division of Neurosurgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Purpose: We sought to evaluate the incidence, natural history, and management of cystic spinal lesions following myelomeningocele/myeloschisis closure.
Methods: We performed a single-center retrospective review of all patients who underwent myelomeningocele/myeloschisis closure from 2013 to 2018 with follow-up to 5 years old.
Results: We analyzed 100 fetal repairs and 81 postnatal closures from 305 total surgeries.
Aging Dis
December 2024
Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
The complex set of interactions between the immune system and metabolism, known as immunometabolism, has emerged as a critical regulator of disease outcomes in the central nervous system. Numerous studies have linked metabolic disturbances to impaired immune responses in brain aging, neurodegenerative disorders, and brain injury. In this review, we will discuss how disruptions in brain immunometabolism balance contribute to the pathophysiology of brain dysfunction.
View Article and Find Full Text PDFEur Spine J
January 2025
Department of Orthopedic Surgery, Spine Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
Purpose: To investigate the relationship between spinal cord anatomy and the risk of curve progression in mild to moderate adolescent idiopathic scoliosis (AIS).
Methods: We prospectively included patients presenting with mild or moderate AIS (< 40 degrees). Irrespective of curve severity, patients underwent 3-dimensional MRI and were followed until skeletal maturity or surgery.
Cell Biochem Funct
January 2025
Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.
Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!