Global warming has an impact on crop growth and development. Flowering time is particularly sensitive to environmental factors such as day length and temperature. In this study, we investigated the effects of global warming on flowering using an open-top Climatron chamber, which has a higher temperature and CO concentration than in the field. Two different soybean cultivars, Williams 82 and IT153414, which exhibited different flowering times, were promoted flowering in the open-top Climatron chamber than in the field. We more specifically examined the expression patterns of soybean flowering genes on the molecular level under high-temperature conditions. The elevated temperature induced the expression of soybean floral activators, and as well as a set of genes. In contrast, it suppressed floral repressors, and homologs. Moreover, high-temperature conditions affected the expression of these flowering genes in a day length-independent manner. Taken together, our data suggest that soybean plants properly respond and adapt to changing environments by modulating the expression of a set of flowering genes in the photoperiod pathway for the successful production of seeds and offspring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7865498 | PMC |
http://dx.doi.org/10.3390/ijms22031314 | DOI Listing |
BMC Plant Biol
January 2025
Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.
View Article and Find Full Text PDFPlant Direct
January 2025
Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal Medicines Henan Academy of Agricultural Sciences Zhengzhou China.
The superfamily represents a class of transcription factors involved in plant growth, development, and stress responses. ., also known as safflower, is an important plant whose flowers contain carthamin, an expensive aromatic pigment with various medicinal and flavoring properties.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark.
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization. Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, P. R. China.
Light is one of the most important environmental factors that affect plant growth and development. It also stimulates anthocyanin biosynthesis in plants. However, the precise molecular mechanisms through which light regulates anthocyanin biosynthesis, particularly in non-model plant species, remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!