A new approach in the development of aircraft and aerospace industry is geared toward increasing use of electric systems. An electromechanical (EM) piezoelectric-based system is one of the potential technologies that can produce a compactable system with a fast response and a high power density. However, piezoelectric materials generate a small strain, of around 0.1-0.2% of the original actuator length, limiting their potential in large-scale applications. This paper reviews the potential amplification mechanisms for piezoelectric-based systems targeting aerospace applications. The concepts, structural designs, and operation conditions of each method are summarized and compared. This review aims to provide a good understanding of piezoelectric-based systems toward selecting suitable designs for potential aerospace applications and an outlook for novel designs in the near future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912372 | PMC |
http://dx.doi.org/10.3390/mi12020140 | DOI Listing |
Nanomicro Lett
October 2024
Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, People's Republic of China.
The incidence of large bone defects caused by traumatic injury is increasing worldwide, and the tissue regeneration process requires a long recovery time due to limited self-healing capability. Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration. Inspired by bioelectricity, electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix, thereby accelerating bone regeneration.
View Article and Find Full Text PDFEnviron Res
October 2024
Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India; Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador. Electronic address:
Drug Discov Today
February 2024
School of Pharmacy, Sharda University, India. Electronic address:
Piezoelectric materials, capable of converting mechanical energy into electrical energy and vice versa, have emerged as promising candidates for designing intelligent drug delivery vehicles. Leveraging their inherent electrical properties, these materials respond to external stimuli, such as mechanical forces and electrical signals, to control drug release. By integrating piezoelectric materials into drug delivery systems, we can achieve exacting control over drug-release mechanisms.
View Article and Find Full Text PDFAdv Mater
February 2024
Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric-based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements.
View Article and Find Full Text PDFOptical links for medical implants have recently been explored as an attractive option primarily because it provides a route to ultrasmall wireless implant systems. Existing devices for optical communication either are not CMOS compatible, require large bias voltages to operate, or consume substantial amounts of power. Here, we present a high-Q CMOS-compatible electro-optic modulator that enables establishing an optical data uplink to implants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!