Redox Homeostasis in Poultry: Regulatory Roles of NF-κB.

Antioxidants (Basel)

Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.

Published: January 2021

Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912633PMC
http://dx.doi.org/10.3390/antiox10020186DOI Listing

Publication Analysis

Top Keywords

redox homeostasis
24
redox
11
roles redox
8
attention range
8
transcription factor
8
stress conditions
8
poultry
6
homeostasis
6
nf-κb
5
homeostasis poultry
4

Similar Publications

Background: Pulmonary arterial hypertension (PAH) is a progressive disorder that can lead to right ventricular failure and severe consequences. Despite extensive efforts, limited progress has been made in preventing the progression of PAH. Mitochondrial dysfunction is implicated in the development of PAH, but the key mitochondrial functional alterations in the pathogenesis have yet to be elucidated.

View Article and Find Full Text PDF

Bioinspired artificial antioxidases for efficient redox homeostasis and maxillofacial bone regeneration.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.

Reconstructing large, inflammatory maxillofacial defects using stem cell-based therapy faces challenges from adverse microenvironments, including high levels of reactive oxygen species (ROS), inadequate oxygen, and intensive inflammation. Here, inspired by the reaction mechanisms of intracellular antioxidant defense systems, we propose the de novo design of an artificial antioxidase using Ru-doped layered double hydroxide (Ru-hydroxide) for efficient redox homeostasis and maxillofacial bone regeneration. Our studies demonstrate that Ru-hydroxide consists hydroxyls-synergistic monoatomic Ru centers, which efficiently react with oxygen species and collaborate with hydroxyls for rapid proton and electron transfer, thus exhibiting efficient, broad-spectrum, and robust ROS scavenging performance.

View Article and Find Full Text PDF

Cotargeting of thioredoxin 1 and glutamate-cysteine ligase in both imatinib-sensitive and imatinib-resistant CML cells.

Biochem Pharmacol

January 2025

State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China. Electronic address:

Chronic myeloid leukemia (CML) is a type of malignancy characterized by harboring the oncogene Bcr-Abl, which encodes the constitutively activated tyrosine kinase BCR-ABL. Although tyrosine kinase inhibitors targeting BCR-ABL have revolutionized CML therapy, native and acquired drug resistance commonly remains a great challenge. Thioredoxin 1 (Trx1) and glutamate-cysteine ligase (GCL), which are two major antioxidants that maintain cellular redox homeostasis, are potential targets for cancer therapy and overcoming drug resistance.

View Article and Find Full Text PDF

Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes.

View Article and Find Full Text PDF

Purpose: Redox homeostasis plays a key role in regulating the overall health and development of organisms. This study aimed to develop a compact and mobile continuous-wave (CW) electron paramagnetic resonance (EPR) imager to facilitate stable, highly sensitive fast three-dimensional (3D) whole-body imaging of nitroxide-infused mice.

Methods: A multiturn loop gap resonator with a diameter of 30 mm and length of 35 mm was designed for whole-body EPR imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!