MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7866122 | PMC |
http://dx.doi.org/10.3390/ijms22031274 | DOI Listing |
Chem Res Toxicol
July 2021
Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea.
Nitrogen mustards are a widely used class of antitumor agents that exert their cytotoxic effects through the formation of DNA interstrand cross-links (ICLs). Despite being among the first antitumor agents used, the biological responses to NM ICLs remain only partially understood. We have previously reported the generation of NM ICL mimics by incorporation of ICL precursors into DNA using solid-phase synthesis at defined positions, followed by a double reductive amination reaction.
View Article and Find Full Text PDFInt J Mol Sci
January 2021
Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity.
View Article and Find Full Text PDFACS Chem Biol
December 2019
Department of Biology New York University, New York , New York 10003 , United States.
DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that block the access of proteins to DNA and interfere with gene expression, replication, and repair. We previously described DPC formation at the N7-guanine position of DNA in human cells treated with antitumor nitrogen mustards and platinum compounds and have shown that DPCs can form endogenously at DNA epigenetic mark 5-formyl-dC. However, insufficient information is available about the effects of these structurally distinct DPCs on transcription.
View Article and Find Full Text PDFChem Commun (Camb)
June 2018
Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, Minnesota 55455, USA.
DNA-protein cross-links (DPCs) are super-bulky DNA adducts induced by common chemotherapeutic agents, reactive oxygen species, and aldehydes, and also formed endogenously as part of epigenetic regulation. Despite their presence in most cells and tissues, the biological effects of DPCs are poorly understood due to the difficulty of constructing site-specific DNA-protein conjugates. In the present work, a new approach of conjugating proteins to DNA using oxime ligation was used to generate model DPCs structurally analogous to lesions formed in cells.
View Article and Find Full Text PDFChem Res Toxicol
February 2017
Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States.
DNA-protein cross-links are formed upon exposure of cellular DNA to various agents, including antitumor drugs, UV light, transition metals, and reactive oxygen species. They are thought to contribute to cancer, aging, and neurodegenerative diseases. It has been proposed that DNA-protein cross-links formed in cells are subject to proteolytic degradation to the corresponding DNA-peptide cross-links (DpCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!