Purpose: The goal of this work is to propose a new multichannel method correcting for systematic thickness disturbances and to evaluate its precision in relevant radiation dosimetry applications.
Methods: The eigencolor ratio technique is introduced and theoretically developed to provide a method correcting for thickness disturbances. The method is applied to EBT3 Gafchromic film irradiated with cobalt-60 and 6 MV photon beams and digitized with an Epson 10000XL photo scanner. Dose profiles and output factors of different field sizes are measured and analyzed. Variance analysis of the previous method of Bouchard et al. ["On the characterization and uncertainty analysis of radiochromic film dosimetry" Med Phys. 2009;36:1931-1946] is adapted to the new approach. Uncertainties are predicted for relevant applications.
Results: Results show that systematic disturbances attributed to thickness variations are efficiently corrected. The method is shown efficient to identify and correct for dark spots which cause systematic errors in single-channel distributions. Applications of the method in the context of relative dosimetry yields standard uncertainties ranging between 0.8% and 1.9%, depending on the region of interest (ROI) size and the film irradiation. Variance analysis predicts that uncertainty levels between 0.3% and 0.6% are achievable with repeated measurements. Uncertainties are found to vary with absorbed dose and ROI size.
Conclusions: The proposed multichannel method is efficient for accurate dosimetry, reaching uncertainty levels comparable to previous publications with EBT film. The method is also promising for applications beyond clinical QA, such as machine characterization and other advanced dosimetry applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.14742 | DOI Listing |
Vet Radiol Ultrasound
January 2025
Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri, USA.
Strontium-90 plesiotherapy delivers high doses of radiation to superficial lesions (<3 mm depth) with excellent sparing of deeper tissues. The sealed-source applicator tip is circular and 8-10 mm in diameter. Larger treatment fields are treated with multiple overlapping fields.
View Article and Find Full Text PDFInt J Part Ther
March 2025
Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen, Germany.
Purpose: The spot size of scanned particle beams is of crucial importance for the correct dose delivery and, therefore, plays a significant role in the quality assurance (QA) of pencil beam scanning ion beam therapy.
Materials And Methods: This study compares 5 detector types-radiochromic film, ionization chamber (IC) array, flat panel detector, multiwire chamber, and IC-for measuring the spot size of proton and carbon ion beams.
Results: Variations of up to 30% were found between detectors, underscoring the impact of detector choice on QA outcomes.
Med Dosim
January 2025
Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY.
Purpose: In radiotherapy treatment planning systems, modelling of superficial dose may be aided by a body contour that is, by default, placed at the outermost air-tissue interface. Here we investigate the accuracy of superficial dose calculated using either the default body contour (DBC) or an extended body contour (EBC) compared to radiochromic film measurements made on a slab phantom and an anthropomorphic phantom.
Methods: Depth dose curves in the superficial region of the slab phantom were measured using stacked radiochromic films and irradiated using static beams delivered from varying incident angles.
Health Phys
January 2025
Department of Physics, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario, M5B 2K3.
This study elucidated the radiation response characteristics of a Gafchromic radiochromic film subjected to low photon doses of ≤50 mSv, which corresponds to the annual whole body effective dose limit for radiation workers in Canada. Radiochromic films are investigated for possible use as a complementary tool for the Canadian Armed Forces that can be worn in addition to their existing personal dosimetry to quickly assess personal radiation dose received from radiological hazards without reliance on electronics. The films were exposed to varying photon energies emanating from x-ray generators and radioisotopes, specifically cesium-137, cobalt-60, and americium-241.
View Article and Find Full Text PDFPhys Med Biol
December 2024
Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States of America.
This study analyzed the spectral response of EBT3, EBT4, and EBT-XD radiochromic films using absorption spectroscopy. The primary focus was on characterizing the evolution of spectral signatures across a range of absorbed doses, thereby elucidating the unique dose-dependent response profiles of each film type. Ten samples of each film type were subjected to open field irradiation within their designated dose ranges (1-20 Gy for EBT3 and EBT4, 1-50 Gy for EBT-XD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!