Brain-computer interfaces (BCIs) decode information from neural activity and send it to external devices. The use of Deep Learning approaches for decoding allows for automatic feature engineering within the specific decoding task. Physiologically plausible interpretation of the network parameters ensures the robustness of the learned decision rules and opens the exciting opportunity for automatic knowledge discovery.We describe a compact convolutional network-based architecture for adaptive decoding of electrocorticographic (ECoG) data into finger kinematics. We also propose a novel theoretically justified approach to interpreting the spatial and temporal weights in the architectures that combine adaptation in both space and time. The obtained spatial and frequency patterns characterizing the neuronal populations pivotal to the specific decoding task can then be interpreted by fitting appropriate spatial and dynamical models.We first tested our solution using realistic Monte-Carlo simulations. Then, when applied to the ECoG data from Berlin BCI competition IV dataset, our architecture performed comparably to the competition winners without requiring explicit feature engineering. Using the proposed approach to the network weights interpretation we could unravel the spatial and the spectral patterns of the neuronal processes underlying the successful decoding of finger kinematics from an ECoG dataset. Finally we have also applied the entire pipeline to the analysis of a 32-channel EEG motor-imagery dataset and observed physiologically plausible patterns specific to the task.We described a compact and interpretable CNN architecture derived from the basic principles and encompassing the knowledge in the field of neural electrophysiology. For the first time in the context of such multibranch architectures with factorized spatial and temporal processing we presented theoretically justified weights interpretation rules. We verified our recipes using simulations and real data and demonstrated that the proposed solution offers a good decoder and a tool for investigating motor control neural mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/abe20e | DOI Listing |
Sensors (Basel)
January 2025
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.
This study investigates the potential of deploying a neural network model on an advanced programmable logic controller (PLC), specifically the Finder Opta™, for real-time inference within the predictive maintenance framework. In the context of Industry 4.0, edge computing aims to process data directly on local devices rather than relying on a cloud infrastructure.
View Article and Find Full Text PDFJ Imaging
January 2025
RCAM Laboratory, Telecommunications Department, Sidi Bel Abbes University, Sidi Bel Abbes 22000, Algeria.
In recent years, deep-network-based hashing has gained prominence in image retrieval for its ability to generate compact and efficient binary representations. However, most existing methods predominantly focus on high-level semantic features extracted from the final layers of networks, often neglecting structural details that are crucial for capturing spatial relationships within images. Achieving a balance between preserving structural information and maximizing retrieval accuracy is the key to effective image hashing and retrieval.
View Article and Find Full Text PDFSci Rep
January 2025
National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
This study aimed to develop a real-time, noninvasive hyperkalemia monitoring system for dialysis patients with chronic kidney disease. Hyperkalemia, common in dialysis patients, can lead to life-threatening arrhythmias or sudden death if untreated. Therefore, real-time monitoring of hyperkalemia in this population is crucial.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-111, Iran.
Unlabelled: There is a growing interest in utilizing 3D culture models for stem cell and cancer cell research due to their closer resemblance to in vivo environments. In this study, human mesenchymal stem cells (MSCs) were cultured using adipocytes and osteocytes as differentiative mediums on varying concentrations of chitosan substrate. Light microscopy was employed to capture cell images from the first day to the 21st day of differentiation.
View Article and Find Full Text PDFJ Clin Med
January 2025
Hospital Virgen de la Arrixaca, 30120 Murcia, Spain.
Accurate segmentation of the left ventricular myocardium in cardiac MRI is essential for developing reliable deep learning models to diagnose left ventricular non-compaction cardiomyopathy (LVNC). This work focuses on improving the segmentation database used to train these models, enhancing the quality of myocardial segmentation for more precise model training. We present a semi-automatic framework that refines segmentations through three fundamental approaches: (1) combining neural network outputs with expert-driven corrections, (2) implementing a blob-selection method to correct segmentation errors and neural network hallucinations, and (3) employing a cross-validation process using the baseline U-Net model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!