Atmospheric cold plasma-assisted pineapple peel waste hydrolysate detoxification for the production of bacterial cellulose.

Int J Biol Macromol

Institute of Food Science and Technology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, #1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan. Electronic address:

Published: April 2021

Toxic compounds in pineapple peel waste hydrolysate (PPWH), namely formic acid, 5-hydroxymethylfurfural (HMF), and furfural, are the major predicament in its utilization as a carbon source for bacterial cellulose (BC) fermentation. A rapid detoxification procedures using atmospheric cold plasma (ACP) technique were employed to reduce the toxic compounds. ACP treatment allows the breakdown of toxic compounds without causing excessive breakdown of sugars. Herein, the performance of two available laboratory ACP reactors for PPWH detoxification was being demonstrated. ACP-reactor-1 (R1) runs on plasma power of 80-200 W with argon (Ar) plasma source, while ACP-reactor-2 (R2) runs at 500-600 W with air plasma source. Treatment in R1, at 200 W for 15 min, results in 74.06%, 51.38%, and 21.81% reduction of furfural, HMF, and formic acid. Treatment in R2 at 600 W gives 45.05%, 32.59%, and 60.41% reductions of furfural, HMF, and formic acid. The BC yield from the fermentation of Komagateibacter xylinus in the R1-treated PPWH, R2-treated PPWH, and untreated-PPWH is 2.82, 3.82, and 2.97 g/L, respectively. The results show that ACP treatment provides a novel detoxified strategy in achieving agricultural waste hydrolysate reuse in fermentation. Furthermore, the results also imply that untreated PPWH can be an inexpensive and sustainable resource for fermentation media supplementation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.01.169DOI Listing

Publication Analysis

Top Keywords

waste hydrolysate
12
toxic compounds
12
formic acid
12
atmospheric cold
8
pineapple peel
8
peel waste
8
bacterial cellulose
8
acp treatment
8
plasma source
8
furfural hmf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!