Global change and ecosystem transformation at regional and local scales during recent decades have facilitated the exponential increase of outbreaks of mosquito-borne diseases. Mosquito-borne pathogens are responsible for millions of infections, mainly in tropical regions where marginalized human populations are located, and where in recent years processes of landscape anthropization have occurred. Anthropogenic landscape transformation is known to change species assemblages. However, the magnitude of these effects is largely unknown, and the effects of anthropogenic landscape transformation on sylvatic mosquito assemblages are poorly known in Mexican ecosystems. We evaluate how mosquito abundance, richness, and diversity change along a gradient of three human-modified landscapes-one highly anthropized, one moderately anthropized, and one slightly anthropized-within a tropical forest matrix in a Protected Natural Area in Chiapas. A total of 4 538 mosquitoes belonging to 23 species were captured and identified at the three sites. We found differences in the structure and abundance of the three mosquito assemblages. The species assemblage of the highly anthropized site was significantly different from the other sites, and the relative abundance of the assemblages increased with landscape anthropization. Our results suggest that landscape anthropization alters the composition and structure of mosquito assemblages, modifying the abundance and species richness of mosquitoes associated with sylvatic ecosystems. This could support the hypothesis of intermediate disturbance that suggests the diversity is maximized when late and early successional species coexist in these ecosystems. This information is essential to understand the ecology of potential sylvatic vectors and the environmental factors that are involved in the emergence and re-emergence of mosquito-borne diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actatropica.2021.105849 | DOI Listing |
Glob Chang Biol
January 2025
Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.
View Article and Find Full Text PDFSci Total Environ
December 2024
Laboratório de Ecologia de Produtores Primários (ECOPRO), Instituto de Ciências Biológicas, Universidade Federal do Pará, R. Augusto Corrêa, 01, 66075-110, Belém, Pará, Brazil.
Aquatic macrophytes encompass a highly diverse group of plants with different strategies, niche requirements, and dispersion capacities. Therefore, macrophyte life forms can respond distinctly to environmental factors. We analyzed whether emergent/amphibious, floating-leaves/rooted submerged, and free-floating/free-submerged macrophytes respond differently to local, spatial, and land use variables in ponds and streams of the Amazon.
View Article and Find Full Text PDFConserv Physiol
December 2024
Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, 20133, Milan, Italy.
Honeybees ( Linnaeus, 1758) are managed pollinators in anthropized landscapes but suffer adverse physiological effects from urbanization due to increased pollution, higher temperatures and a loss of habitat quality. Previous studies in various animal taxa have shown how responses of digestive enzymes, such as Aminopeptidase N (APN), can indicate stress conditions and thus be used to measure the harmfulness of anthropogenic disturbance. However, no studies have focused on bees.
View Article and Find Full Text PDFEcol Appl
December 2024
Center for Ecology, Evolution and Environmental Change CE3C and CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
Identifying how species richness or diversity changes with different proportions of natural and anthropized environments in the landscape is important for landscape management for conservation. Here, we propose a new method to assess biodiversity changes in landscapes with varying proportions of habitat types. The algorithm is based on the resampling of individuals recorded in different habitats considering both the proportion occupied by each habitat in the landscape and the number of individuals recorded in each habitat.
View Article and Find Full Text PDFSci Total Environ
December 2024
Applied Ecology Laboratory, University of Sorocaba, Rodovia Raposo Tavares - km 92 a 100, Vila Artura, CEP 18023-000 Sorocaba, São Paulo, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!