With age, the epidermis becomes hypoplastic and hypoproliferative. Hypoproliferation due to aging has been associated with decreased stem cell (SC) self-renewal in multiple murine tissues. The fate of SC self-renewal divisions can be asymmetric (one SC, one committed progenitor) or symmetric (two SCs). Increased asymmetric SC self-renewal has been observed in inflammatory-mediated hyperproliferation, while increased symmetric SC self-renewal has been observed in cancers. We analyzed SC self-renewal divisions in aging human epidermis to better understand the role of SCs in the hypoproliferation of aging. In human subjects, neonatal to 78 years, there was an age-dependent decrease in epidermal basal layer divisions. The balance of SC self-renewal shifted toward symmetric SC self-renewal, with a decline in asymmetric SC self-renewal. Asymmetric SC divisions maintain epidermal stratification, and this decrease may contribute to the hypoplasia of aging skin. P53 decreases in multiple tissues with age, and p53 has been shown to promote asymmetric SC self-renewal. Fewer aged than adult ALDH+CD44+ keratinocyte SCs exhibited p53 expression and activity and Nutlin-3 (a p53 activator) returned p53 activity as well as asymmetric SC self-renewal divisions to adult levels. Nutlin-3 increased Notch signaling (NICD, Hes1) and DAPT inhibition of Notch activation prevented Nutlin-3 (p53)-induced asymmetric SC self-renewal divisions in aged keratinocytes. These studies indicate a role for p53 in the decreased asymmetric SC divisions with age and suggest that in aged keratinocytes, Notch is required for p53-induced asymmetric SC divisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884041PMC
http://dx.doi.org/10.1111/acel.13310DOI Listing

Publication Analysis

Top Keywords

asymmetric self-renewal
20
self-renewal divisions
16
self-renewal
12
asymmetric divisions
12
asymmetric
10
decline asymmetric
8
stem cell
8
cell self-renewal
8
human epidermis
8
hypoproliferation aging
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!