It has been suggested that many novel RNA-binding proteins (RBPs) are required for gametogenesis, but the necessity of few of these proteins has been functionally verified. Here, we identified one RBP, Rbm46, and investigated its expression pattern and role in zebrafish reproduction. We found that rbm46 is maternally provided and specifically expressed in the germ cells of gonadal tissues using in situ hybridization, reverse transcription-PCR, and quantitative real-time polymerase chain reaction (qRT-PCR). Two independent rbm46 mutant zebrafish lines were generated via the transcription activator-like effector nuclease technique. Specific disruption of rbm46 resulted in masculinization and infertility in the mutants. Although the spermatogonia appeared grossly normal in the mutants, spermatogenesis was impaired, and meiosis events were not observed. The introduction of a tp53M214K mutation could not rescue the female-to-male sex-reversal phenotype, indicating that rbm46 acts independently of the p53-dependent apoptotic pathway. RNA sequencing and qRT-PCR subsequently indicated that Rbm46 might be involved in the posttranscriptional regulation of functional genes essential for germ cell development, such as nanos3, dazl, and sycp3, during gametogenesis. Together, our results reveal for the first time the crucial role of rbm46 in regulating germ cell development in vivo through promotion of germ cell progression through meiosis prophase I.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biolre/ioab016DOI Listing

Publication Analysis

Top Keywords

germ cell
12
rbm46
8
cell development
8
germ
5
rbm46 novel
4
novel germ
4
germ cell-specific
4
cell-specific factor
4
factor modulates
4
modulates meiotic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!