Projections of ice sheet behavior hinge on how ice flow velocity evolves and the extent to which marine-based grounding lines are stable. Ice flow and grounding line retreat are variably governed by the coupling between the ice and underlying terrain. We ask to what degree catchment-scale bed characteristics determine ice flow and retreat, drawing on paleo-ice sheet landform imprints from 99 sites on continental shelves worldwide. We find that topographic setting has broadly steered ice flow and that the bed slope favors particular styles of retreat. However, we find exceptions to accepted "rules" of behavior: Regional topographic highs are not always an impediment to fast ice flow, retreat may proceed in a controlled, steady manner on reverse slopes and, unexpectedly, the occurrence of ice streaming is not favored on a particular geological substrate. Furthermore, once grounding line retreat is under way, readvance is rarely observed regardless of regional bed characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806225PMC
http://dx.doi.org/10.1126/sciadv.abb6291DOI Listing

Publication Analysis

Top Keywords

ice flow
20
flow retreat
12
ice
9
ice sheet
8
grounding retreat
8
bed characteristics
8
flow
6
retreat
6
exceptions bed-controlled
4
bed-controlled ice
4

Similar Publications

Continuous Characterization of Insoluble Particles in Ice Cores Using the Single-Particle Extinction and Scattering Method.

Environ Sci Technol

December 2024

Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, Bern 3012, Switzerland.

This study presents the integration of the single-particle extinction and scattering (SPES) method in a continuous flow analysis (CFA) setup. Continuous measurements with the instrument allow for the characterization of water-insoluble particles in ice cores at high resolution with a minimized risk of contamination. The SPES method can be used to investigate particles smaller than 1 μm, which previously could not be detected by instruments typically used in CFA.

View Article and Find Full Text PDF

Deceased-donor kidney allografts are exposed to ischemic injury during ex vivo transport due to the lack of blood oxygen supply. Hypothermic machine perfusion (HMP) effectively reduces the risk of delayed graft function in kidney transplant recipients compared to standard cold storage. However, no free software implementation is available to analyze HMP data for state-of-the-art visualization and quality control.

View Article and Find Full Text PDF

Length-dependent water permeation through a graphene channel.

Phys Chem Chem Phys

January 2025

MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China.

Water confined in two-dimensional channels exhibits unique properties, such as rich morphology, specific phase transition and a low dielectric constant. In this work, molecular dynamics simulations have been used to study the water transport in two-dimensional graphene channels. The structures and dynamics of water under confinement show strong dependence on the channel length and thickness of the channels.

View Article and Find Full Text PDF

In the marine realm, unidirectional ocean currents often lead to high migration rates of marine organisms and, therefore, inhibit the formation of their latitudinal genetic structure. In contrast, cryptic latitudinal structures associated with local adaptation may frequently exist in widespread species generally exposed to a strong environmental heterogeneity. However, our understanding of the evolvability of locally adapted populations in open marine environments still needs to be completed.

View Article and Find Full Text PDF

Rationale: The stable isotope compositions of atmospheric CO can provide useful insight into various geochemical processes and carbon cycles on Earth, which is critical for understanding of Earth's changing climate. Here, we present a simple and cost-effective analytical method for the collection and measurement of carbon and oxygen isotope compositions of atmospheric CO.

Methods: Air samples of ~150 mL were collected individually or collectively using our simple active air collection system and then extracted on a vacuum purification line to remove noncondensable gases and atmospheric water vapor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!