A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fine mapping identifies NAD-ME1 as a candidate underlying a major locus controlling temporal variation in primary and specialized metabolism in Arabidopsis. | LitMetric

Plant metabolism is modulated by a complex interplay between internal signals and external cues. A major goal of all quantitative metabolomic studies is to clone the underlying genes to understand the mechanistic basis of this variation. Using fine-scale genetic mapping, in this work we report the identification and initial characterization of NAD-DEPENDENT MALIC ENZYME 1 (NAD-ME1) as the candidate gene underlying the pleiotropic network Met.II.15 quantitative trait locus controlling variation in plant metabolism and circadian clock outputs in the Bay × Sha Arabidopsis population. Transcript abundance and promoter analysis in NAD-ME1 and NAD-ME1 alleles confirmed allele-specific expression that appears to be due a polymorphism disrupting a putative circadian cis-element binding site. Analysis of transfer DNA insertion lines and heterogeneous inbred families showed that transcript variation of the NAD-ME1 gene led to temporal shifts of tricarboxylic acid cycle intermediates, glucosinolate (GSL) accumulation, and altered regulation of several GSL biosynthesis pathway genes. Untargeted metabolomic analyses revealed complex regulatory networks of NAD-ME1 dependent upon the daytime. The mutant led to shifts in plant primary metabolites, cell wall components, isoprenoids, fatty acids, and plant immunity phytochemicals, among others. Our findings suggest that NAD-ME1 may act as a key gene to coordinate plant primary and secondary metabolism in a time-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15178DOI Listing

Publication Analysis

Top Keywords

nad-me1 candidate
8
locus controlling
8
plant metabolism
8
plant primary
8
nad-me1
7
plant
5
fine mapping
4
mapping identifies
4
identifies nad-me1
4
candidate underlying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!