Members of the genus Malassezia are known to be opportunistic pathogens responsible for causing skin disorders such as seborrheic dermatitis or dandruff, pityriasis versicolor, folliculitis, atopic dermatitis, and psoriasis. Due to the side effects caused by prolonged use of current topical antifungal agents, development of an alternative treatment is necessary. Fermentative production of antimicrobial metabolites from Bacillus amyloliquefaciens MTCC 10456 was carried out, and their antagonistic activity against Malassezia furfur and Malassezia globosa was evaluated. The antifungal metabolites were isolated by acid precipitation, and bioassay-guided simultaneous separation of the antimicrobial compounds was done by reversed-phase high-performance liquid chromatography (RP-HPLC). The fraction which demonstrated antifungal activity consisted of bacilysin, homologues of bacillomycin D, and members of the macrolactin family. The presence of bacilysin was detected using specific inhibitor assays and homologues of bacillomycin D, and macrolactins were identified using liquid chromatography/high-resolution electrospray ionization-mass spectrometry (LC/HRESI-MS/MS) analysis. Synergism among the identified compounds was observed which enhanced the antagonistic activity against Malassezia spp. To our knowledge, this is the first study to report the co-production and separation of members of macrolactin antibiotics, lipopeptides such as bacillomycin D and dipeptide antibiotic bacilysin, by any Bacillus strain from marine environment. Activity of individual compounds against Malassezia has been reported which may facilitate their application in the field of dermatology and in cosmetic products.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-021-09742-2DOI Listing

Publication Analysis

Top Keywords

antagonistic activity
12
antimicrobial metabolites
8
bacillus amyloliquefaciens
8
amyloliquefaciens mtcc
8
mtcc 10456
8
malassezia spp
8
activity malassezia
8
homologues bacillomycin
8
members macrolactin
8
malassezia
6

Similar Publications

Unlabelled: While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits.

Background/objectives: Broccoli ( L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits.

View Article and Find Full Text PDF

The loss of skeletal muscle mass and strength, known as sarcopenia, is prevalent in older adults and linked to an increased risk of disability, frailty, and early mortality. Muscle health is crucial for the functionality and independence of older adults. As the aging population continuously grows, finding cost-effective strategies for preventing and treating sarcopenia is an important public health priority.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

Alfalfa ( L.) is an outstanding species used for the remediation of heavy metal-contaminated soil, and our previous research has shown that PGPR can promote plant growth under high-concentration lead stress. This discovery has forced scientists to search for PGPR strains compatible with alfalfa to develop an innovative bioremediation strategy for the remediation of lead-contaminated soil.

View Article and Find Full Text PDF

Lactobacillus is a key genus of probiotics commonly utilized for the treatment of oral infections The primary aim of our research was to investigate the probiotic potential of the newly isolated DPL5 strain from human breast milk, focusing on its ability to combat biofilm-forming pathogens such as . Employing in vitro approaches, we demonstrate DPL5's ability to endure at pH 3 with survival rates above 30%, and withstand the osmotic stress often found during industrial processes like fermentation and freeze drying, retaining over 90% viability. The lyophilized cell-free supernatant of DPL5 had a significant antagonistic effect against biofilm-producing nasal strains of , and it completely eradicated biofilms at subinhibitory concentrations of 20 mg·mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!