A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. | LitMetric

Purpose: To assess the ability of radiomic features (RF) extracted from contrast-enhanced CT images (ceCT) and non-contrast-enhanced (non-ceCT) in discriminating histopathologic characteristics of pancreatic neuroendocrine tumors (panNET).

Methods: panNET contours were delineated on pre-surgical ceCT and non-ceCT. First- second- and higher-order RF (adjusted to eliminate redundancy) were extracted and correlated with histological panNET grade (G1 vs G2/G3), metastasis, lymph node invasion, microscopic vascular infiltration. Mann-Whitney with Bonferroni corrected p values assessed differences. Discriminative power of significant RF was calculated for each of the end-points. The performance of conventional-imaged-based-parameters was also compared to RF.

Results: Thirty-nine patients were included (mean age 55-years-old; 24 male). Mean diameters of the lesions were 24 × 27 mm. Sixty-nine RF were considered. Sphericity could discriminate high grade tumors (AUC = 0.79, p = 0.002). Tumor volume (AUC = 0.79, p = 0.003) and several non-ceCT and ceCT RF were able to identify microscopic vascular infiltration: voxel-alignment, neighborhood intensity-difference and intensity-size-zone families (AUC ≥ 0.75, p < 0.001); voxel-alignment, intensity-size-zone and co-occurrence families (AUC ≥ 0.78, p ≤ 0.002), respectively). Non-ceCT neighborhood-intensity-difference (AUC = 0.75, p = 0.009) and ceCT intensity-size-zone (AUC = 0.73, p = 0.014) identified lymph nodal invasion; several non-ceCT and ceCT voxel-alignment family features were discriminative for metastasis (p < 0.01, AUC = 0.80-0.85). Conventional CT 'necrosis' could discriminate for microscopic vascular invasion (AUC = 0.76, p = 0.004) and 'arterial vascular invasion' for microscopic metastasis (AUC = 0.86, p = 0.001). No conventional-imaged-based-parameter was significantly associated with grade and lymph node invasion.

Conclusions: Radiomic features can discriminate histopathology of panNET, suggesting a role of radiomics as a non-invasive tool for tumor characterization.

Trial Registration Number: NCT03967951, 30/05/2019.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11547-021-01333-zDOI Listing

Publication Analysis

Top Keywords

radiomic features
8
characteristics pancreatic
8
pancreatic neuroendocrine
8
neuroendocrine tumors
8
microscopic vascular
8
vascular infiltration
8
ct-derived radiomic
4
features discriminate
4
discriminate histologic
4
histologic characteristics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!