Mitigated viral myocarditis in A/J mice by the immunoproteasome inhibitor ONX 0914 depends on inhibition of systemic inflammatory responses in CoxsackievirusB3 infection.

Basic Res Cardiol

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Charitéplatz 1, 10117, Berlin, Germany.

Published: February 2021

A preclinical model of troponin I-induced myocarditis (AM) revealed a prominent role of the immunoproteasome (ip), the main immune cell-resident proteasome isoform, in heart-directed autoimmunity. Viral infection of the heart is a known trigger of cardiac autoimmunity, with the ip enhancing systemic inflammatory responses after infection with a cardiotropic coxsackievirusB3 (CV). Here, we used ip-deficient A/J-LMP7 mice to investigate the role of ip-mediated effects on adaptive immunity in CV-triggered myocarditis and found no alteration of the inflammatory heart tissue damage or cardiac function in comparison to wild-type controls. Aiming to define the impact of the systemic inflammatory storm under the control of ip proteolysis during CV infection, we targeted the ip in A/J mice with the inhibitor ONX 0914 after the first cycle of infection, when systemic inflammation has set in, well before cardiac inflammation. During established acute myocarditis, the ONX 0914 treatment group had the same reduction in cardiac output as the controls, with inflammatory responses in heart tissue being unaffected by the compound. Based on these findings and with regard to the known anti-inflammatory role of ONX 0914 in CV infection, we conclude that the efficacy of ip inhibitors for CV-triggered myocarditis in A/J mice relies on their immunomodulatory effects on the systemic inflammatory reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851025PMC
http://dx.doi.org/10.1007/s00395-021-00848-wDOI Listing

Publication Analysis

Top Keywords

onx 0914
16
systemic inflammatory
16
a/j mice
12
inflammatory responses
12
myocarditis a/j
8
inhibitor onx
8
cv-triggered myocarditis
8
heart tissue
8
inflammatory
6
infection
6

Similar Publications

Objective: Cardiac Allograft Vasculopathy (CAV), a process of vascular damage accelerated by antibody-mediated rejection (AMR), is one of the leading causes of cardiac transplant failure. Proteasome inhibitors (PIs) are utilized to treat AMR, however PI-associated toxicity limits their therapeutic utility. Novel immunoproteasome inhibitors (IPIs) have higher specificity for immune cells and have not been investigated for AMR in cardiac transplant patients.

View Article and Find Full Text PDF

Unlabelled: The immunoproteasome (IP) is a predominantly inducible component of the ubiquitin proteasome system that plays key roles in multiple aspects of immune function, inflammation, and protein homeostasis. We used murine hepatitis virus strain 1 (MHV-1), a mouse coronavirus, to define the role of IP activity during acute coronavirus respiratory infection. Expression of the β5i subunit of the IP and cytokines that induce IP activity, including IFN-γ, TNF-α, and IFN-β, increased in lungs and livers of CH3/HeJ mice following intranasal infection with MHV-1.

View Article and Find Full Text PDF

Targeting Immunoproteasome in Polarized Macrophages Ameliorates Experimental Emphysema Via Activating NRF1/2-P62 Axis and Suppressing IRF4 Transcription.

Adv Sci (Weinh)

November 2024

Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.

Article Synopsis
  • * Research indicates that inhibiting the immunoproteasome can reduce inflammation and improve lung function in COPD models, particularly through the use of the inhibitor ONX-0914.
  • * ONX-0914 shows improved efficacy when delivered in PLGA nanoparticles, effectively targeting macrophages and modulating their polarization, making it a promising therapeutic approach for COPD.
View Article and Find Full Text PDF

The immunogenicity of cancer cells is influenced by several factors, including the expression of the major histocompatibility complex class I (MHC-I), antigen expression, and the repertoire of proteasome-produced epitope peptides. The malignant pleural mesothelioma cell line ACC-MEOS-4 (MESO-4) expresses high levels of MHC-I and Wilms tumor 1 (WT1) tumor antigens. Using a functional T cell reporter assay specific for the HLA-A*24:02 restricted WT1 epitope (WT1235, CMTWNQMNL), we searched for factors that augmented the immunogenicity of MESO-4, focusing on proteasomes, which have a central role in the antigen processing machinery.

View Article and Find Full Text PDF

Targeting the immunoproteasome in hypothalamic neurons as a novel therapeutic strategy for high-fat diet-induced obesity and metabolic dysregulation.

J Neuroinflammation

August 2024

Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

Objective: Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!