A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overexpression of WssgtL3.1 gene from Withania somnifera confers salt stress tolerance in Arabidopsis. | LitMetric

Overexpression of Withania somnifera SGT gene (WssgtL3.1) in transgenic Arabidopsis improves various agronomic and physiological traits and alters conjugated sterol levels to mitigate the effect of salt stress. Sterols are essential constituents of cell membranes that are involved in several biological functions, including response to various biotic and abiotic stresses by altering membrane permeability and signaling pathways. Sterol glycosyltransferases (SGTs) are enzymes that are involved in sterol modification by converting sterols into sterol-conjugates to play essential roles in adaptive responses. However, their roles under abiotic stresses are lesser-known. Among abiotic stresses, salinity imposes serious threat to crop yield worldwide, hence the present study intends to investigate the role of WssgtL3.1-overexpressed Arabidopsis plants under salt stress indicating the crosstalk between SGT gene and salinity to develop improved crop varieties with better stress tolerance ability. The findings revealed that overexpression of WssgtL3.1 gene in A. thaliana improved the resistance against salt stress in the overexpressing lines. Transgenic lines showed significantly higher germination rate, increased plant growth with less chlorophyll damage compared to wild-type (WT) control plants. Moreover, better tolerance also correlated with enhanced osmolytes (proline and soluble sugar), better membrane integrity, decreased HO production and lesser MDA accumulation and Na/K ratio with more negative osmotic potential in overexpressed lines. Additionally, in sterol profiling, significant enhancement in stigmasterol was also observed in transgenic lines than WT plants. Furthermore, in expression profiling, salt responsive genes LEA 4-5, sucrose synthase, and transporter of monosaccharide (ERD) significantly upregulated in overexpressing lines as compared to WT. Thus our data strongly support the defensive role of Withania somnifera SGT gene (WssgtL3.1) against salt stress and contribute to improved salinity tolerance in plants through sterol modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-021-02666-9DOI Listing

Publication Analysis

Top Keywords

salt stress
20
withania somnifera
12
sgt gene
12
abiotic stresses
12
overexpression wssgtl31
8
wssgtl31 gene
8
stress tolerance
8
somnifera sgt
8
gene wssgtl31
8
overexpressing lines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!