Climate change and abiotic stress mechanisms in plants.

Emerg Top Life Sci

Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.

Published: May 2019

Predicted global climatic change will perturb the productivity of our most valuable crops as well as detrimentally impact ecological fitness. The most important aspects of climate change with respect to these effects relate to water availability and heat stress. Over multiple decades, the plant research community has amassed a highly comprehensive understanding of the physiological mechanisms that facilitate the maintenance of productivity in response to drought, flooding, and heat stress. Consequently, the foundations necessary to begin the development of elite crop varieties that are primed for climate change are in place. To meet the food and fuel security concerns of a growing population, it is vital that biotechnological and breeding efforts to harness these mechanisms are accelerated in the coming decade. Despite this, those concerned with crop improvement must approach such efforts with caution and ensure that potentially harnessed mechanisms are viable under the context of a dynamically changing environment.

Download full-text PDF

Source
http://dx.doi.org/10.1042/ETLS20180105DOI Listing

Publication Analysis

Top Keywords

climate change
12
heat stress
8
change abiotic
4
abiotic stress
4
mechanisms
4
stress mechanisms
4
mechanisms plants
4
plants predicted
4
predicted global
4
global climatic
4

Similar Publications

Addressing the Environmental Impact of Pharmaceuticals: A Call to Action.

Br J Hosp Med (Lond)

January 2025

Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, UK.

The contribution of health care to environmental and climate crises is significant, under-addressed, and with consequences for human health. This editorial is a call to action. Focusing on pharmaceuticals as a major environmental threat, we examine pharmaceutical impacts across their lifecycle, summarising greenhouse gas emissions, pollution, and biodiversity loss, and outlining challenges and opportunities to reduce this impact.

View Article and Find Full Text PDF

Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.

View Article and Find Full Text PDF

Neglected tropical diseases (NTDs) represent a group of chronic and debilitating infections that affect more than one billion people, predominantly in low-income communities with limited health infrastructure. This paper analyzes the factors that perpetuate the burden of NTDs, highlighting how poor health infrastructure, unfavorable socioeconomic conditions and lack of therapeutic resources exacerbate their impact. The effectiveness of current interventions, such as mass drug administration (MDA) programs and improved sanitation, in reducing disease prevalence is examined.

View Article and Find Full Text PDF

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.

View Article and Find Full Text PDF

Trade-Offs Between Hydraulic Efficiency and Safety in Cotton ( L.) Stems Under Elevated CO and Salt Stress.

Plants (Basel)

January 2025

State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.

Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!