A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The structure of metallic melts in eutectic alloys based on the Wulff cluster model: theory meets experiment. | LitMetric

The structure of metallic melts in eutectic alloys based on the Wulff cluster model: theory meets experiment.

Phys Chem Chem Phys

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China.

Published: February 2021

In the present work, the Wulff cluster model, which has been proved to be successful for pure metals and homogeneous alloys, has been extended to eutectic alloys (Ag-Cu and Al-Si). In our model, the shapes of the clusters in melts were determined by the interfacial energy calculated by density functional theory (DFT) of different facet families based on Wulff theory. The cluster size was given by the pair distribution function (PDF) g(r), which was converted from experimental high-temperature X-ray diffraction (HTXRD). The simulated XRD curves in the high temperature region were in good agreement with the experimental results. For the Al-Si alloy, a deviation of the intensity and position of the second peak near the eutectic temperature was observed. The simulated results after structure and composition modification corresponded to the experimental ones. It indicates that the deviation is mainly related to the significant change of the cluster size during Si clusters' growth processes before nucleation. Differently, there are no such nucleation processes at temperatures near the eutectic point due to the relatively high nucleation barriers of the two components in the Ag-Cu alloy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp05842dDOI Listing

Publication Analysis

Top Keywords

eutectic alloys
8
based wulff
8
wulff cluster
8
cluster model
8
cluster size
8
structure metallic
4
metallic melts
4
eutectic
4
melts eutectic
4
alloys based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!