We report that the stability of amorphous clofazimine (CFZ) against crystallization is vastly improved by salt formation with a polymer without sacrificing dissolution rate. A simple slurry method was used to produce the amorphous salt of CFZ with poly(acrylic acid) (PAA) at 75 wt % drug loading. The synthesis was performed under a mild condition suitable for thermally unstable drugs and polymers. Salt formation was confirmed by visible spectroscopy and glass temperature elevation. The amorphous salt at 75 wt % drug loading is remarkably stable against crystallization at 40 °C and 75% RH for at least 180 days. In contrast, the amorphous solid dispersion containing the un-ionized CFZ dispersed in poly(vinylpyrrolidone) crystallized in 1 week under the same condition. The high stability of the amorphous drug-polymer salt is a result of the absence of a drug-polymer crystalline structure, reduced driving force for crystallizing the free base, and reduced molecular mobility. Despite the elevated stability, the amorphous drug-polymer salt showed fast dissolution and high solution concentration in two biorelevant media (SGF and FaSSIF). Additionally, the amorphous CFZ-PAA salt has improved tabletability and powder flow relative to crystalline CFZ. The CFZ-PAA example suggests a general method to prepare amorphous drugs with high physical stability under tropical conditions and fast dissolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7927142PMC
http://dx.doi.org/10.1021/acs.molpharmaceut.0c01180DOI Listing

Publication Analysis

Top Keywords

amorphous drug-polymer
12
drug-polymer salt
12
fast dissolution
12
stability amorphous
12
amorphous
9
salt
8
high stability
8
stability tropical
8
tropical conditions
8
conditions fast
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!