Skeletal muscle has a remarkable ability to regenerate following injury, which is driven by obligate tissue resident muscle stem cells. Following injury, the muscle stem cell is activated and undergoes cell proliferation to generate a pool of myoblasts, which subsequently differentiate to form new muscle fibers. In many muscle wasting conditions, including muscular dystrophy and ageing, this process is impaired resulting in the inability of muscle to regenerate. The process of muscle regeneration in zebrafish is highly conserved with mammalian systems providing an excellent system to study muscle stem cell function and regeneration, in muscle wasting conditions such as muscular dystrophy. Here, we present a method to examine muscle regeneration in zebrafish models of muscle disease. The first step involves the use of a genotyping platform that allows the determination of the genotype of the larvae prior to eliciting an injury. Having determined the genotype, the muscle is injured using a needle stab, following which polarizing light microscopy is used to determine the extent of muscle regeneration. We therefore provide a high throughput pipeline which allows the examination of muscle regeneration in zebrafish models of muscle disease.

Download full-text PDF

Source
http://dx.doi.org/10.3791/62071DOI Listing

Publication Analysis

Top Keywords

muscle regeneration
20
regeneration zebrafish
16
muscle
16
zebrafish models
12
models muscle
12
muscle disease
12
muscle stem
12
stem cell
8
muscle wasting
8
wasting conditions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!