Inhalers are often used to treat patients with chronic obstructive pulmonary disease (COPD). However, there are many available, which can lead to confusion and poor inhaler technique. It is important for a patient to be happy with their inhaler. This study looked at how patients liked the re-usable Respimat® Soft Mist™ inhaler vs. their previous inhaler. It also asked whether they would be willing to continue using the device at the end of the study period.After 4-6 weeks of using the re-usable device, patients reported that they were happy with the inhaler and most would be willing to carry on using it.Overall, these results show that doctors can prescribe Respimat re-usable to patients, even if the patient has not used the inhaler before.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7868496PMC
http://dx.doi.org/10.1177/1479973120986228DOI Listing

Publication Analysis

Top Keywords

soft mist™
8
mist™ inhaler
8
happy inhaler
8
inhaler
7
patient perceptions
4
re-usable
4
perceptions re-usable
4
re-usable respimatt
4
respimatt soft
4
inhaler current
4

Similar Publications

Buruli Ulcer Transmission: Environmental Pathways and Implications for Dermatologic Care.

Cutis

December 2024

Michelle R. Anthony is from the University of Arizona College of Medicine, Tucson. Christopher Farkouh is from Rush Medical College, Chicago, Illinois. Parsa Abdi is from Memorial University, St. Johns, Newfoundland, Canada. Dr. Khan is from Kyber Teaching Hospital MTI KTH, Peshawar, Pakistan.

Buruli ulcer (BU) is a necrotizing skin and soft tissue disease caused by Mycobacterium ulcerans that is common in hot and humid climates. Mycobacterium ulcerans is a nontuberculous mycobacterium and ubiquitous acid-fast gram-positive bacillus known to thrive in aquatic environments and water insects. The mode of transmission to humans is poorly understood and varies by geography.

View Article and Find Full Text PDF
Article Synopsis
  • Multimodal sensing using soft body dynamics is essential for controlling soft robotic movements, particularly through the imitation of whisker dynamics.
  • The study introduces a multitasking electronic brush (e-brush) featuring four integrated pressure sensors capable of monitoring motion parameters like speed, force, slip, and surface interactions with low pressure sensitivity.
  • A reservoir computing algorithm is employed to accurately extract and analyze these motion parameters, successfully demonstrating the brush's ability to track handwriting movements as a proof of concept.
View Article and Find Full Text PDF

Light-emitting, self-healing robotic fibers.

Sci Robot

January 2025

Science Robotics, AAAS, Washington, DC 20005, USA.

Optical and mechanical self-healing compatibility was achieved in a multilayered electroluminescent robotic soft fiber.

View Article and Find Full Text PDF

A hyperelastic torque-reversal mechanism for soft joints with compression-responsive transient bistability.

Sci Robot

January 2025

Biorobotics Laboratory, Soft Robotics Research Center, Institute of Advanced Machines and Design, Department of Mechanical Engineering, Institute of Engineering, Seoul National University, Seoul, Republic of Korea.

Snap-through, a rapid transition of a system from an equilibrium state to a nonadjacent equilibrium state, is a valuable design element of soft devices for converting a monolithic stimulus into systematic responses with impulsive motions. A common way to benefit from snap-through is to embody it within structures and materials, such as bistable structures. Torque-reversal mechanisms discovered in nature, which harness snap-through instability via muscular forces, may have comparative advantages.

View Article and Find Full Text PDF

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!