Background: Alginate-encapsulated islet xenografts have restored normoglycemia in diabetic animals for various periods of time. Plausible mechanisms of graft failure in vivo include immune rejection and hypoxia. We sought to understand the effects of encapsulated adult porcine islet (API) dosage on the peritoneal dissolved oxygen (DO) level in correlation to the achieved glycemic regulation in diabetic mice.

Methods: Adult porcine islets encapsulated in barium alginate were transplanted intraperitoneally in streptozotocin diabetic BALB/c mice at 6000 and 4000 islet equivalents (IEQ) and in normal mice at 500 IEQ; APIs encapsulated in calcium alginate were transplanted at 6000 IEQ in diabetic mice. In all cases, cell-free barium alginate capsules containing a perfluorocarbon emulsion were co-implanted for DO measurements using F NMR spectroscopy. Blood glucose levels and peritoneal DO were measured over 60 days or until graft failure. Explanted capsules were evaluated microscopically and histologically.

Results: Both barium and calcium alginate-encapsulated APIs at 6000 IEQ reversed diabetes until day 60; barium alginate-encapsulated APIs at 4000 IEQ also reversed diabetes but with a higher failure rate. Transplanted APIs significantly reduced the peritoneal DO, approximately in a dose-dependent manner. The number of viable islets and the insulin content per capsule decreased over time. Capsules retrieved from normoglycemic mice exhibited minimal host cell adherence.

Conclusions: Transplantation of encapsulated APIs can reduce peritoneal DO to severely hypoxic levels. Although normoglycemia could be maintained within the study period, the DO levels suggest that hypoxia is a factor contributing to loss of islet viability and insulin secretion with time in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/xen.12673DOI Listing

Publication Analysis

Top Keywords

adult porcine
12
peritoneal dissolved
8
dissolved oxygen
8
encapsulated adult
8
porcine islets
8
streptozotocin diabetic
8
diabetic mice
8
graft failure
8
barium alginate
8
alginate transplanted
8

Similar Publications

Background/objectives: Histamine intolerance is primarily caused by a deficiency in the diamine oxidase (DAO) enzyme at the intestinal level. The reduced histamine degradation in the gut leads to its accumulation in plasma, thereby causing multiple clinical manifestations, such as urticaria, diarrhea, headache, dyspnea, or tachycardia, among others. The dietary management of this food intolerance consists of the follow-up of a low-histamine diet, often combined with DAO supplementation.

View Article and Find Full Text PDF

Background: Fasciolopsis buski is a large fluke that parasitises the human small intestine, with its infection in the biliary tract being even rarer. Given its relatively rare occurrence in recent years, the clinical diagnosis of F. buski infections can pose certain challenges.

View Article and Find Full Text PDF

Background: Neospora caninum (Apicomplexa, Sarcocystidae) is a protozoan parasite regarded as a major cause of reproductive failure in cattle. Swine are susceptible to N. caninum infection; however, the role of these animals in the circulation, maintenance, and transmission of N.

View Article and Find Full Text PDF

A perfusion-independent high-throughput method to isolate liver sinusoidal endothelial cells.

Commun Biol

January 2025

AngioRhythms in Health and Disease, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

Liver sinusoidal endothelial cells (LSECs) critically regulate homeostatic liver function and liver pathogenesis. However, the isolation of LSECs remains a major technological bottleneck in studying molecular mechanisms governing LSEC functions. Current techniques to isolate LSECs, relying on perfusion-dependent liver digestion, are cumbersome with limited throughput.

View Article and Find Full Text PDF

Early Results of an Infant Model of Orthotopic Cardiac Xenotransplantation.

J Heart Lung Transplant

January 2025

Division of Cardiac Surgery, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA. Electronic address:

Objective: Genetically engineered porcine hearts may have an application for infants in need of a bridge to cardiac allotransplantation. The current animal model that resulted in 2 human applications has been validated in adult non-human primates only. We sought to create an infant animal model of life sustaining cardiac xenotransplantation to understand limitations specific to this age group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!