Melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), two neural G protein-coupled receptors are known to be functionally critical for energy balance in vertebrates. As allosteric regulators of melanocortin receptors, melanocortin accessory proteins (MRAPs) are also involved in energy homeostasis. The interaction of MRAPs and melanocortin signaling was previously shown in mammals and zebrafish, but nothing had been reported in amphibians. As the basal class of tetrapods, amphibians occupy a phylogenetic transition between teleosts and terrestrial animals. Here we examined the evolutionary conservation of MC3R, MC4R, and MRAPs between diploid Xenopus tropicalis (xt-) and other chordates and investigated the pharmacological regulatory properties of MRAPs on the neural MC3R and MC4R signaling. Our results showed that xtMRAP and xtMRAP2 both exerted robust potentiation effect on agonist (α-MSH and adrenocorticotropin [ACTH]) induced activation and modulated the basal activity and cell surface translocation of xtMC3R and xtMC4R. In addition, the presence of two accessory proteins could convert xtMC3R and xtMC4R into ACTH-preferred receptors. These findings suggest that the presence of MRAPs exhibits fine control over the pharmacological activities of the neuronal MC3R and MC4R signaling in the Xenopus tropicalis, which is physiologically relevant with the complicated transition of feeding behaviors during their life history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.30306 | DOI Listing |
J Ovarian Res
December 2024
Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA.
bioRxiv
November 2024
Department of Metabolism and Systems Science, University of Birmingham, Birmingham, UK.
The central melanocortin system links nutrition to energy expenditure, with melanocortin-4 receptor (MC4R) controlling appetite and food intake, and MC3R regulating timing of sexual maturation, rate of linear growth and lean mass accumulation. Melanocortin-2 receptor accessory protein-2 (MRAP2) is a single transmembrane protein that interacts with MC4R to potentiate it's signalling, and human mutations in MRAP2 cause obesity. Previous studies have been unable to consistently show whether MRAP2 affects MC3R activity.
View Article and Find Full Text PDFPediatr Obes
December 2024
Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy.
Background: The diagnosis of monogenic obesity is burdened by frequent variants of uncertain significance (VUS). We describe our real-life approach of variant reassessment over time and we assess whether inconclusive variants are decreasing in monogenic obesity.
Methods: We tested for monogenic obesity (genes: LEPR, POMC, ADCY3, PCSK1, CARTPT, SIM1, MRAP2, LEP, NTRK2, BDNF, KSR2, MAGEL2, SH2B1, MC4R, MC3R) in 101 children/adolescents (11.
The melanocortin-3 receptor (MC3R) regulates GABA release from agouti-related protein (AgRP) nerve terminals and thus tonically suppresses multiple circuits involved in feeding behavior and energy homeostasis. Here, we examined the role of the MC3R and the melanocortin system in regulating the response to various anorexigenic agents. The genetic deletion or pharmacological inhibition of the MC3R, or subthreshold doses of an MC4R agonist, improved the dose responsiveness to glucagon-like peptide 1 (GLP1) agonists, as assayed by inhibition of food intake and weight loss.
View Article and Find Full Text PDFObes Rev
October 2024
INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France.
Patients with monogenic obesity display numerous medical features on top of hyperphagic obesity, but no study to date has provided an exhaustive description of their semiology. Two reviewers independently conducted a systematic review of MEDLINE, Embase, and Web of Science Core Collection databases from inception to January 2022 to identify studies that described symptoms of patients carrying pathogenic mutations in at least one of eight monogenic obesity genes (ADCY3, LEP, LEPR, MC3R, MC4R, MRAP2, PCSK1, and POMC). Of 5207 identified references, 269 were deemed eligible after title and abstract screening, full-text reading, and risk of bias and quality assessment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!