Ovarian follicular atresia is a natural physiological process; however, the mechanism is not fully understood. In this study, quantitative proteomic and phosphoproteomic analyses of granulosa cells (GCs) in healthy (H), slightly atretic (SA), and atretic follicles (A) of porcine were performed by TMT labeling, enrichment of phosphopeptides, and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. In total, 6,201 proteins were quantified, and 4,723 phosphorylation sites of 1,760 proteins were quantified. In total, 24 (11 up, 13 down) and 50 (29 up, 21 down) proteins with a fold change (FC) > 5 were identified in H/SA and H/A, respectively. In addition, there were 20 (H/SA, up) and 39 (H/A, up) phosphosites with an FC > 7 that could serve as potential biomarkers for distinguishing different quality categories of follicles. Western blotting and immunofluorescence confirmed the reliability of the proteomic analysis. Some key proteins (e.g., MIF, beta catenin, integrin β2), phosphosites (e.g., S76 of caspase6, S22 and S636 of lamin A/C), pathways (e.g., apoptosis, regulation of actin cytoskeleton pathway), transcription factors (e.g., STAT5A, FOXO1, and BCLAF1), and kinases (e.g., PBK, CDK5, CDK12, and AKT3) involved in the atresia process were revealed further analysis of the differentially expressed proteins (DEPs) and phosphorylated proteins (DEPPs). Further study showed that mutant caspase6 Ser76 to Ala increased the ratios of cleaved caspase6/caspase6 and cleaved caspase3/caspase3 and dephosphorylation of caspase6 at Ser76 increased cell apoptotic rate, a new potential pathway of follicular atresia. Collectively, the proteomic and phosphoproteomic profiling and functional research in the current study comprehensively analyzed the dynamic changes in protein expression and phosphorylation during follicular atresia and provided some new explanations regarding the regulation of this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843964 | PMC |
http://dx.doi.org/10.3389/fcell.2020.624985 | DOI Listing |
J Steroid Biochem Mol Biol
December 2024
Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, China. Electronic address:
Programmed cell death (PCD) is a fundamental process in the development process of organisms, including apoptosis, autophagy, ferroptosis, and pyroptosis. In mammalian ovaries, 99% of follicles undergo atresia, while only 1% mature and ovulate, which limits the reproductive efficiency of mammals. The PCD process is closely related to the regulation of follicle development and atresia.
View Article and Find Full Text PDFHum Reprod
December 2024
Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India.
The extensive use of bisphenols in the plastics industry globally is a major growing concern for human health. Bisphenol compounds are easily leached out from plastic containers to food, beverages, and drinking water and contaminate the natural environment. Daily exposure of bisphenol compounds increases their load and impairs various organs, including the reproductive system.
View Article and Find Full Text PDFJ Ovarian Res
December 2024
Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, No. 2, Hafez St., Banihashem St., Resalat Ave., Tehran, 16635-148, Iran.
Background: Cyclophosphamide is a widely utilized chemotherapeutic agent for pediatric cancers, known to elicit adverse effects, including perturbation of the PI3K/Akt/mTOR and Hippo signaling pathways, thereby diminishing ovarian reserve and fertility potential in females. Consequently, this investigation delves into the mitigative effects of metformin on cyclophosphamide-induced ovarian impairment in prepubertal mice.
Methods: Twenty-four 14-day-old NMRI female mice were distributed into four groups: Control (Cont), Cyclophosphamide (Cyc), Metformin (Met), and Metformin plus Cyclophosphamide (Met-Cyc).
Cell Death Dis
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Follicular atresia is the primary threat to female fertility. miRNAs are dysregulated in granulosa cells (GCs) during follicular atresia, and have emerged as crucial regulators of the initiation and progression of follicular atresia. However, the downregulated ovary-elevated (OE) miRNAs and their biological functions in ovary remain elusive.
View Article and Find Full Text PDFAnat Histol Embryol
January 2025
Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Histología y Embriología, Buenos Aires, Argentina.
The coypu (Myocastor coypus bonariensis) is an annual polyestrous hystricomorph rodent with variable-length oestrous cycles, which ovarian histoarchitecture during this period is not fully described. This study analyses variations in ovarian morphology during the oestrous cycle, focusing on follicular development and atresia. Eighteen sexually mature virgin females aged 7-9 months, weighing 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!