Background And Aim: Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now become the world pandemic. There is a race to develop suitable drugs and vaccines for the disease. The anti-HIV protease drugs are currently repurposed for the potential treatment of COVID-19. The drugs were primarily screened against the SARS-CoV-2 main protease. With an urgent need for safe and effective drugs to treat the virus, we have explored natural products isolated from edible and medicinal mushrooms that have been reported to possess anti-HIV protease.

Experimental Procedures: We have examined 36 compounds for their potential to be SARS-CoV-2 main protease inhibitors using molecular docking study. Moreover, drug-likeness properties including absorption, distribution, metabolism, excretion and toxicity were evaluated by ADMET analysis.

Results: Our AutoDock study showed that 25 of 36 candidate compounds have the potential to inhibit the main viral protease based on their binding affinity against the enzyme's active site when compared to the standard drugs. Interestingly, ADMET analysis and toxicity prediction revealed that 6 out of 25 compounds are the best drug-like property candidates, including colossolactone VIII, colossolactone E, colossolactone G, ergosterol, heliantriol F and velutin.

Conclusion: Our study highlights the potential of existing mushroom-derived natural compounds for further investigation and possibly can be used to fight against SARS-CoV-2 infection.

Taxonomy Classification By Evise: Disease, Infectious Disease, Respiratory System Disease, Covid-19, Traditional Medicine, Traditional Herbal Medicine, Phamaceutical Analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7836338PMC
http://dx.doi.org/10.1016/j.jtcme.2020.12.002DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 main
12
main protease
12
compounds potential
8
compounds
5
sars-cov-2
5
protease
5
disease
5
drugs
5
mushroom-derived bioactive
4
bioactive compounds
4

Similar Publications

Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations.

Nat Prod Bioprospect

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.

In the twenty-first century, we have witnessed multiple coronavirus pandemics. Despite declining SARS-CoV-2 cases, continued research remains vital. We report the discovery of sydowiol B, a natural product, as a dual inhibitor of SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro).

View Article and Find Full Text PDF

Viral nucleic acid load in the milk of lactating mothers with COVID-19 and the prognosis of infants.

Sci Rep

January 2025

Department of Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Lequn Branch, No. 3302 Jilin Road, Changchun, 130021, China.

The global spread of the novel coronavirus disease 2019, caused by SARS-CoV-2 virus, impacts individuals of all age groups, including lactating women and children. Concerns have been raised regarding the potential transmission of SARS-CoV-2 from mother to child, following the discovery of SARS-CoV-2 RNA in human milk. Therefore, this study aims to investigate whether the Omicron novel coronavirus variants are transmitted through human milk.

View Article and Find Full Text PDF

Background: Age-related cognitive decline (ARCD) refers to the cognitive changes that occur in individuals because of aging. Research suggests that the underlying mechanism behind ARCD is a loss of synaptic plasticity and altered dendritic spine morphology. Similarly, the cognitive changes in Alzheimer's Disease (AD) are also thought to arise from impaired synaptic plasticity and dendritic spine loss.

View Article and Find Full Text PDF

Background: The emergence of new SARS-CoV-2 variants poses a new challenge for the treatment of immunocompromised patients against COVID-19. In this context, high titer COVID-19 Convalescent Plasma (CCP) is one of the few available therapeutics for these patients. We have revisited the selection of CCP samples and its efficacy against Omicron XBB.

View Article and Find Full Text PDF

Dual Inhibitors of SARS-CoV-2 3CL Protease and Human Cathepsin L Containing Glutamine Isosteres Are Anti-CoV-2 Agents.

J Am Chem Soc

January 2025

Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77845, United States.

SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!