Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins.

J Tradit Complement Med

Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.

Published: March 2021

Background And Aim: COVID-19 emerged by the end of 2019 in Wuhan, China. It spreaded and became a public health emergency all over the world by mid of April 2020. Flavonoids are specialized metabolites that have antimicrobial properties including anti-viral activity. Rutin, a medicinally important flavonoid belongs to one of the best natural antioxidant classes. It has antiprotozoal, antibacterial, and antiviral properties. Keeping the antimicrobial potential of rutin in mind, we studied its role in the inhibition of essential proteins of SARS-CoV-2 including main protease (M), RNA-dependent RNA polymerase (RdRp), papain-like protease (PL), and spike (S)-protein through different approaches.

Experimental Procedure: Molecular docking, inhibition constant, hydrogen bond calculations, and ADMET-properties prediction were performed using different softwares.

Results And Conclusion: Molecular docking study showed significant binding of rutin with M, RdRp, PL, and S-proteins of SARS-CoV-2. Out of these four proteins, M exhibited the strongest binding affinity with the least binding energy (-8.9 kcal/mol) and stabilized through hydrogen bonds with bond lengths ranging from 1.18 Å to 3.17 Å as well as hydrophobic interactions. The predicted ADMET and bioactivity showed its optimal solubility, non-toxic, and non-carcinogenic properties. The values of the predicted inhibitory constant of the rutin with SARS-CoV-2 vital proteins ranged between 5.66 μM and 6.54 μM which suggested its promising drug candidature. This study suggested rutin alone or in combination as a dietary supplement may be used to fight against COVID-19 after detailed and studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825826PMC
http://dx.doi.org/10.1016/j.jtcme.2021.01.006DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
sars-cov-2 vital
8
vital proteins
8
rutin
6
docking analysis
4
analysis rutin
4
rutin reveals
4
reveals inhibition
4
sars-cov-2
4
inhibition sars-cov-2
4

Similar Publications

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is one of the most common systemic autoimmune inflammatory diseases, with a progressive etiology that results in serious complications and a higher chance of early death. Visfatin, an adipokine, is correlated with disease pathologic features and becomes a key biomarker and therapeutic target for RA. This study aimed to evaluate the anti-arthritic activity of metformin (an antidiabetic drug with anti-inflammatory activities) and methotrexate (the first choice for disease-modifying antirheumatic drugs in RA, with diverse adverse effects) in complete Freund's adjuvant (CFA)-induced arthritis in female rats.

View Article and Find Full Text PDF

Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin.

Arch Microbiol

January 2025

Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.

Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).

View Article and Find Full Text PDF

Discovery of potential VEGFR-2 inhibitors from natural products by virtual screening and molecular dynamics simulation.

Phys Chem Chem Phys

January 2025

Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.

Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.

View Article and Find Full Text PDF

Xuefu Zhuyu Decoction (XZD) is widely used in the treatment of cardiovascular diseases. The purpose of this study was to explore the pharmacological effects and molecular mechanisms of XZD in improving hyperlipidemia and to provide a theoretical framework for clinical application. In this study, the signaling pathways regulated by XZD in improving hyperlipidemia were predicted by network pharmacology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!