The dynamic of covid-19 epidemic model with a convex incidence rate is studied in this article. First, we formulate the model without control and study all the basic properties and results including local and global stability. We show the global stability of disease free equilibrium using the method of Lyapunov function theory while for disease endemic, we use the method of geometrical approach. Furthermore, we develop a model with suitable optimal control strategies. Our aim is to minimize the infection in the host population. In order to do this, we use two control variables. Moreover, sensitivity analysis complemented by simulations are performed to determine how changes in parameters affect the dynamical behavior of the system. Taking into account the central manifold theory the bifurcation analysis is also incorporated. The numerical simulations are performed in order to show the feasibility of the control strategy and effectiveness of the theoretical results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834202PMC
http://dx.doi.org/10.1016/j.rinp.2020.103703DOI Listing

Publication Analysis

Top Keywords

optimal control
8
convex incidence
8
incidence rate
8
global stability
8
simulations performed
8
control
5
stability analysis
4
analysis optimal
4
control covid-19
4
covid-19 convex
4

Similar Publications

Infected burn wounds present significant clinical challenges due to delayed healing and risk of infection, necessitating advanced treatments that offer both antimicrobial and regenerative properties. This study aimed to develop and evaluate multifunctional electrospun nanofiber films incorporating rhamnose (as an angiogenic agent) and therapeutic agents, namely fluticasone, mupirocin, ciprofloxacin, and silver sulfadiazine, for the enhanced healing of infected burn wounds. Nanofibers containing rhamnose, polyacrylonitrile, polyvinyl alcohol and therapeutic agents were fabricated electrospinning.

View Article and Find Full Text PDF

[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:

Article Synopsis
  • The study investigates how curcumin affects bladder cancer cells regarding growth, movement, and resistance to cisplatin (a chemotherapy drug) by targeting a specific signaling pathway (LKB1-AMPK-LC3).
  • Human bladder cancer cells (T24) and their cisplatin-resistant counterparts (T24/DDP) were treated with varying concentrations of curcumin, and various assays measured cell proliferation, migration, autophagy, and apoptosis.
  • Results showed that curcumin, especially when combined with metformin, influences these cellular functions and could reduce drug resistance, affecting the expression of proteins in the targeted signaling pathway.
View Article and Find Full Text PDF

Bayesian network for predicting mandibular third molar extraction difficulty.

BMC Oral Health

January 2025

Sub-Institute of Public Safety Standardization, China National Institute of Standardization, No.4 Zhichun Road, Haidian District, Beijing, 100191, PR China.

Background: This study aimed to establish a model for predicting the difficulty of mandibular third molar extraction based on a Bayesian network to meet following requirements: (1) analyse the interaction of the primary risk factors; (2) output quantitative difficulty-evaluation results based on the patient's personal situation; and (3) identify key surgical points and propose surgical protocols to decrease complications.

Methods: Relevant articles were searched to identify risk factors. Clinical knowledge and experience were used to analyse the risk factors to establish the Bayesian network.

View Article and Find Full Text PDF

A PDMS/chitosan/MPMs composite film based on multi-field coupling enhancement for African swine fever virus P72 protein detection.

Mikrochim Acta

January 2025

Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.

View Article and Find Full Text PDF

Knee osteoarthritis (KOA) represents a progressive degenerative disorder characterized by the gradual erosion of articular cartilage. This study aimed to develop and validate biomarker-based predictive models for KOA diagnosis using machine learning techniques. Clinical data from 2594 samples were obtained and stratified into training and validation datasets in a 7:3 ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!