In this paper we present a fully automated graph-based segmentation algorithm that jointly uses optical coherence tomography (OCT) and OCT angiography (OCTA) data to segment Bruch's membrane (BM). This is especially valuable in cases where the spatial correlation between BM, which is usually not visible on OCT scans, and the retinal pigment epithelium (RPE), which is often used as a surrogate for segmenting BM, is distorted by pathology. We validated the performance of our proposed algorithm against manual segmentation in a total of 18 eyes from healthy controls and patients with diabetic retinopathy (DR), non-exudative age-related macular degeneration (AMD) (early/intermediate AMD, nascent geographic atrophy (nGA) and drusen-associated geographic atrophy (DAGA) and geographic atrophy (GA)), and choroidal neovascularization (CNV) with a mean absolute error of ∼0.91 pixel (∼4.1 μm). This paper suggests that OCT-OCTA segmentation may be a useful framework to complement the growing usage of OCTA in ophthalmic research and clinical communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7818963PMC
http://dx.doi.org/10.1364/BOE.398222DOI Listing

Publication Analysis

Top Keywords

geographic atrophy
12
oct-octa segmentation
8
segment bruch's
8
bruch's membrane
8
segmentation combining
4
combining structural
4
structural blood
4
blood flow
4
flow segment
4
membrane paper
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!