AI Article Synopsis

  • Spinel iron oxide nanoparticles with sizes between 10-25 nm were synthesized through a surfactant-free hydro-thermal method, and characterized extensively using advanced structural techniques.
  • A non-stoichiometric tetragonal γ-FeO phase was found to best fit the structural data, indicating vacancy ordering and smaller coherence lengths due to disorder in the nanoparticles.
  • The study utilized various characterization methods, including electron microscopy and magnetic property measurements, revealing no core-shell structure in the nanoparticles and providing insights into their local atomic and magnetic ordering.

Article Abstract

Spinel iron oxide nanoparticles of different mean sizes in the range 10-25 nm have been prepared by surfactant-free up-scalable near- and super-critical hydro-thermal synthesis pathways and characterized using a wide range of advanced structural characterization methods to provide a highly detailed structural description. The atomic structure is examined by combined Rietveld analysis of synchrotron powder X-ray diffraction (PXRD) data and time-of-flight neutron powder-diffraction (NPD) data. The local atomic ordering is further analysed by pair distribution function (PDF) analysis of both X-ray and neutron total-scattering data. It is observed that a non-stoichiometric structural model based on a tetragonal γ-FeO phase with vacancy ordering in the structure (space group 422) yields the best fit to the PXRD and total-scattering data. Detailed peak-profile analysis reveals a shorter coherence length for the superstructure, which may be attributed to the vacancy-ordered domains being smaller than the size of the crystallites and/or the presence of anti-phase boundaries, faulting or other disorder effects. The intermediate stoichiometry between that of γ-FeO and FeO is confirmed by refinement of the Fe/O stoichiometry in the scattering data and quantitative analysis of Mössbauer spectra. The structural characterization is complemented by nano/micro-structural analysis using transmission electron microscopy (TEM), elemental mapping using scanning TEM, energy-dispersive X-ray spectroscopy and the measurement of macroscopic magnetic properties using vibrating sample magnetometry. Notably, no evidence is found of a FeO/γ-FeO core-shell nanostructure being present, which had previously been suggested for non-stoichiometric spinel iron oxide nanoparticles. Finally, the study is concluded using the magnetic PDF (mPDF) method to model the neutron total-scattering data and determine the local magnetic ordering and magnetic domain sizes in the iron oxide nanoparticles. The mPDF data analysis reveals ferrimagnetic collinear ordering of the spins in the structure and the magnetic domain sizes to be ∼60-70% of the total nanoparticle sizes. The present study is the first in which mPDF analysis has been applied to magnetic nanoparticles, establishing a successful precedent for future studies of magnetic nanoparticles using this technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7792993PMC
http://dx.doi.org/10.1107/S2052252520013585DOI Listing

Publication Analysis

Top Keywords

iron oxide
16
spinel iron
12
oxide nanoparticles
12
total-scattering data
12
non-stoichiometric spinel
8
structural characterization
8
neutron total-scattering
8
analysis reveals
8
magnetic domain
8
domain sizes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!