Direct synthesis of anomeric tetrazolyl iminosugars from sugar-derived lactams.

Beilstein J Org Chem

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.

Published: January 2021

Herein we present the direct asymmetric synthesis of tetrazole-functionalized 1-deoxynojirimycin derivatives from simple sugars via a Schwartz's reagent-mediated reductive amide functionalization followed by a variant of the Ugi-azide multicomponent reaction. The anomeric configurations of two products were unambiguously confirmed by X-ray analysis. This work also describes examples of interesting further transformations of the title products. Finally, some surprising observations regarding the mechanism of their formation were made.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814180PMC
http://dx.doi.org/10.3762/bjoc.17.12DOI Listing

Publication Analysis

Top Keywords

direct synthesis
4
synthesis anomeric
4
anomeric tetrazolyl
4
tetrazolyl iminosugars
4
iminosugars sugar-derived
4
sugar-derived lactams
4
lactams direct
4
direct asymmetric
4
asymmetric synthesis
4
synthesis tetrazole-functionalized
4

Similar Publications

A comprehensive analysis to reveal the underlying molecular mechanisms of natural killer cell in thyroid carcinoma based on single-cell RNA sequencing data.

Discov Oncol

January 2025

The Department of Experimental Medicine, Meishan City People's Hospital, No. 288, South Fourth Section, Dongpo Avenue, Meishan, 620000, Sichuan, China.

Background: Thyroid carcinoma (THCA) is the most common cancer of the endocrine system. Natural killer (NK) cell play an important role in tumor immune surveillance. The aim of this study was to explore the possible molecular mechanisms involved in NK cell in THCA to help the management and treatment of the disease.

View Article and Find Full Text PDF

De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).

View Article and Find Full Text PDF

Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.

View Article and Find Full Text PDF

Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review.

Physiol Res

December 2024

Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.

The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart.

View Article and Find Full Text PDF

Low-temperature synthesis is crucial for advancing sustainable manufacturing and accessing novel metastable phases. Metal hydrides have shown great potential in facilitating the reduction of oxides at low temperatures, yet the underlying mechanism─whether driven by H, H, or atomic H─remains unclear. In this study, we employ electrical transport measurements and first-principles calculations to investigate the CaH-driven reduction kinetics in epitaxial α-FeO thin films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!