Metabolic rates of ectotherms are expected to increase with global trends of climatic warming. But the potential for rapid, compensatory evolution of lower metabolic rate in response to rising temperatures is only starting to be explored. Here, we explored rapid evolution of metabolic rate and locomotor performance in acorn-dwelling ants () in response to urban heat island effects. We reared ant colonies within a laboratory common garden (25°C) to generate a laboratory-born cohort of workers and tested their acute plastic responses to temperature. Contrary to expectations, urban ants exhibited a higher metabolic rate compared with rural ants when tested at 25°C, suggesting a potentially maladaptive evolutionary response to urbanization. Urban and rural ants had similar metabolic rates when tested at 38°C, as a consequence of a diminished plastic response of the urban ants. Locomotor performance also evolved such that the running speed of urban ants was faster than rural ants under warmer test temperatures (32°C and 42°C) but slower under a cooler test temperature (22°C). The resulting specialist-generalist trade-off and higher thermal optimum for locomotor performance might compensate for evolved increases in metabolic rate by allowing workers to more quickly scout and retrieve resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819567 | PMC |
http://dx.doi.org/10.1111/eva.13083 | DOI Listing |
Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized via tricarboxylic acid (TCA) metabolism downstream of TLR signaling. Itaconate-based treatment strategies are being explored to mitigate numerous inflammatory conditions.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences Ibn Zohr University Agadir Morocco.
Hepatic steatosis/non-alcoholic fatty liver disease is a major public health delinquent caused by the excess deposition of lipid into lipid droplets (LDs) as well as metabolic dysregulation. Hepatic cells buildup with more fat molecules when a person takes high fat diet that is excessive than the body can handle. At present, millions of people in the world are affected by this problem.
View Article and Find Full Text PDFPrz Gastroenterol
September 2023
Departament of Civilization Diseases, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, Warsaw, Poland.
Introduction: Optimal control of cardiovascular risk factors remains challenging in non-classical patient groups, including those with metabolic dysfunction-associated steatotic liver disease (MASLD). Dietary restrictions are among the interventions that may be helpful in such cases.
Aim: To evaluate if the declared type of fasting influences the most common cardiovascular risk factor control in patients with MASLD.
Atheroscler Plus
March 2025
Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University, and Tufts University School of Medicine, Boston, MA, 711 Washington Street, 02111, USA.
Background And Aims: The prevalence of metabolic dysfunction associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), has become a significant public health concern with an increased atherosclerotic cardiovascular disease risk. This study investigates the impact of NAFLD-related single nucleotide polymorphisms (SNPs) on carotid atherosclerosis development in a Japanese population without diabetes, dyslipidemia, and hypertension.
Methods: The prospective observational study, part of the Kyushu and Okinawa Population Study (KOPS), included 945 participants (median age 55 [47, 63]) without carotid atherosclerosis, increased alcohol intake, diabetes, dyslipidemia, hypertension, or chronic hepatitis at baseline.
Curr Res Food Sci
December 2024
College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
Fresh passion fruit is sensitive to chilling injury (CI) during storage at improper low temperature of 5 °C, which lowers the fruit quality and limits its shelf life. The present study aimed to determine the impacts of melatonin on CI development of passion fruit in relation to antioxidant ability and membrane lipid metabolism during refrigeration. In present study, passion fruit was treated with 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!