Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plant leaf respiration is one of the critical components of the carbon cycle in terrestrial ecosystems. To predict changes of carbon emissions from leaves to the atmosphere under a warming climate, it is, therefore, important to understand the thermodynamics of the temperature response of leaf respiration. In this study, we measured the short-term temperature response of leaf respiration from five different urban tree species in a subtropical region of southern China. We applied two models, including an empirical model (the Kavanau model) and a mechanistic model (Macromolecular Rate Theory, MMRT), to investigate the thermodynamic properties in different plant species. Both models are equivalent in fitting measurements of the temperature response of leaf respiration with no significant difference ( = 0.67) in model efficiency, while MMRT provides an easy way to determine the thermodynamic properties, i.e., enthalpy, entropy, and Gibbs free energy of activation, for plant respiration. We found a conserved temperature response in the five studied plant species, showing no difference in thermodynamic properties and the relative temperature sensitivity for different species at low temperatures (<42°C). However, divergent temperature response among species happened at high temperatures over 42°C, showing more than two-fold differences in relative respiration rate compared to that below 42°C, although the causes of the divergent temperature response remain unclear. Notably, the convergent temperature response at low temperatures could provide useful information for land surface models to improve predictions of climate change effects on plant respiration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7841330 | PMC |
http://dx.doi.org/10.3389/fpls.2020.628995 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!