Addressing Non-linear System Dynamics of Single-Strand RNA Virus-Host Interaction.

Front Microbiol

Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Venezia, Italy.

Published: January 2021

AI Article Synopsis

  • Positive single-strand RNA viruses are linked to outbreaks, but effective treatment strategies are lacking due to complex interactions between the virus and host cells.
  • The research employs a systems thinking (ST) approach to visualize the dynamic relationships within virus-host interactions, focusing on energy exchange and the components necessary for survival.
  • This framework offers insights into how infections alter system configurations and responses to external forces, aiding in the understanding of viral behavior and potential therapeutic targets.

Article Abstract

Positive single-strand ribonucleic acid [(+)ssRNA] viruses can cause multiple outbreaks, for which comprehensive tailored therapeutic strategies are still missing. Virus and host cell dynamics are tightly connected, generating a complex dynamics that conveys in virion assembly to ensure virus spread in the body. Starting from the knowledge of relevant processes in (+ss)RNA virus replication, transcription, translation, virions budding and shedding, and their respective energy costs, we built up a systems thinking (ST)-based diagram of the virus-host interaction, comprehensive of stocks, flows, and processes as well-described in literature. In ST approach, stocks and flows are expressed by a proxy of the energy embedded and transmitted, respectively, whereas processes are referred to the energy required for the system functioning. In this perspective, healthiness is just a particular configuration, in which stocks relevant for the system (equivalent but not limited to proteins, RNA, DNA, and all metabolites required for the survival) are constant, and the system behavior is stationary. At time of infection, the presence of additional stocks (e.g., viral protein and RNA and all metabolites required for virion assembly and spread) confers a complex network of feedbacks leading to new configurations, which can evolve to maximize the virions stock, thus changing the system structure, output, and purpose. The dynamic trajectories will evolve to achieve a new stationary status, a phenomenon described in microbiology as integration and symbiosis when the system is resilient enough to the changes, or the system may stop functioning and die. Application of external driving forces, acting on processes, can affect the dynamic trajectories adding a further degree of complexity, which can be captured by ST approach, used to address these new configurations. Investigation of system configurations in response to external driving forces acting is developed by computational analysis based on ST diagrams, with the aim at designing novel therapeutic approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843927PMC
http://dx.doi.org/10.3389/fmicb.2020.600254DOI Listing

Publication Analysis

Top Keywords

system
8
virus-host interaction
8
virion assembly
8
stocks flows
8
system functioning
8
metabolites required
8
dynamic trajectories
8
external driving
8
driving forces
8
forces acting
8

Similar Publications

Engineering an optimized hypercompact CRISPR/Cas12j-8 system for efficient genome editing in plants.

Plant Biotechnol J

January 2025

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, China.

The Cas12j-8 nuclease, derived from the type V CRISPR system, is approximately half the size of Cas9 and recognizes a 5'-TTN-3' protospacer adjacent motif sequence, thus potentially having broad application in genome editing for crop improvement. However, its editing efficiency remains low in plants. In this study, we rationally engineered both the crRNA and the Cas12j-8 nuclease.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF

Globally, more than 100 countries have adopted net-zero targets. Most studies agree on how this increases the chance of keeping end-of-century global warming below 2°C. However, they typically make assumptions about net-zero targets that do not capture uncertainties related to gas coverage, sector coverage, sinks, and removals.

View Article and Find Full Text PDF

Protocol to generate a 3D atherogenesis-on-chip model for studying endothelial-macrophage crosstalk in atherogenesis.

STAR Protoc

January 2025

Department of Experimental Vascular Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands; Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000 Leuven, Belgium. Electronic address:

The endothelium is the gatekeeper of vessel health, and its dysfunction is pivotal in driving atherogenesis. Here, we present a protocol to replicate endothelial-macrophage crosstalk during atherogenesis, called the "atherogenesis-on-chip" model, based on the Emulate dual-channel perfusion system. We describe a model for studying endothelial-macrophage interactions during atherogenesis in human aortic endothelial cells and human macrophages using qPCR and secretome analysis, fluorescence microscopy, and flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!