A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study. | LitMetric

Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study.

Appl Soft Comput

College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, 410082, China.

Published: May 2021

The novel coronavirus disease 2019 (COVID-19) pandemic has caused a massive health crisis worldwide and upended the global economy. However, vaccines and traditional drug discovery for COVID-19 cost too much in terms of time, manpower, and money. Drug repurposing becomes one of the promising treatment strategies amid the COVID-19 crisis. At present, there are no publicly existing databases for experimentally supported human drug-virus interactions, and most existing drug repurposing methods require the rich information, which is not always available, especially for a new virus. In this study, on the one hand, we put size-able efforts to collect drug-virus interaction entries from literature and build the Human Drug Virus Database (HDVD). On the other hand, we propose a new approach, called SCPMF (similarity constrained probabilistic matrix factorization), to identify new drug-virus interactions for drug repurposing. SCPMF is implemented on an adjacency matrix of a heterogeneous drug-virus network, which integrates the known drug-virus interactions, drug chemical structures, and virus genomic sequences. SCPMF projects the drug-virus interactions matrix into two latent feature matrices for the drugs and viruses, which reconstruct the drug-virus interactions matrix when multiplied together, and then introduces the weighted similarity interaction matrix as constraints for drugs and viruses. Benchmarking comparisons on two different datasets demonstrate that SCPMF has reliable prediction performance and outperforms several recent approaches. Moreover, SCPMF-predicted drug candidates of COVID-19 also confirm the accuracy and reliability of SCPMF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825831PMC
http://dx.doi.org/10.1016/j.asoc.2021.107135DOI Listing

Publication Analysis

Top Keywords

drug-virus interactions
20
drug repurposing
12
drug
8
similarity constrained
8
constrained probabilistic
8
probabilistic matrix
8
matrix factorization
8
interactions drug
8
interactions matrix
8
drugs viruses
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!