A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Semantic Active Visual Search System Based on Text Information for Large and Unknown Environments. | LitMetric

Different high-level robotics tasks require the robot to manipulate or interact with objects that are in an unexplored part of the environment or not already in its field of view. Although much works rely on searching for objects based on their colour or 3D context, we argue that text information is a useful and functional visual cue to guide the search. In this paper, we study the problem of active visual search (AVS) in large unknown environments. In this paper, we present an AVS system that relies on semantic information inferred from texts found in the environment, which allows the robot to reduce the search costs by avoiding not promising regions for the target object. Our semantic planner reasons over the numbers detected from door signs to decide either perform a goal-directed exploration towards unknown parts of the environment or carefully search in the already known parts. We compared the performance of our semantic AVS system with two other search systems in four simulated environments. First, we developed a greedy search system that does not consider any semantic information, and second, we invited human participants to teleoperate the robot while performing the search. Our results from simulation and real-world experiments show that text is a promising source of information that provides different semantic cues for AVS systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825386PMC
http://dx.doi.org/10.1007/s10846-020-01298-7DOI Listing

Publication Analysis

Top Keywords

active visual
8
search
8
visual search
8
search system
8
large unknown
8
unknown environments
8
avs system
8
semantic
6
semantic active
4
system
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!