A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of occupant distribution on energy consumption and COVID-19 infection in buildings: A case study of university building. | LitMetric

The effect of occupant distribution on energy consumption and COVID-19 infection in buildings: A case study of university building.

Build Environ

Renewable Energies and Environmental Department, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.

Published: March 2021

The occupant density in buildings is one of the major and overlooked parameters affecting the energy consumption and virus transmission risk in buildings. HVAC systems energy consumption is highly dependent on the number of occupants. Studies on the transmission of COVID-19 virus have indicated a direct relationship between occupant density and COVID-19 infection risk. This study aims to seek the optimum occupant distribution patterns that account for the lowest number of infected people and minimum energy consumption. A university building located in Tehran has been chosen as a case study, due to its flexibility in performing various occupant distribution patterns. This multi-objective optimization problem, with the objective functions of energy consumption and COVID-19 infected people, is solved by NSGA-II algorithm. Energy consumption is evaluated by EnergyPlus, then it is supplied to the algorithm through a co-simulation communication between EnergyPlus and MATLAB. Results of this optimization algorithm for 5 consequent winter and summer days, represent optimum occupant distribution patterns, associated with minimum energy consumption and COVID-19 infected people for winter and summer. Building air exchange rate, class duration, and working hours of the university, as the COVID-19 controlling approaches were studied, and promising results have been obtained. It was concluded that an optimal population distribution can reduce the number of infected people by up to 56% and energy consumption by 32%. Furthermore, it was concluded that virtual learning is an excellent approach in universities to control the number of infections and energy consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833359PMC
http://dx.doi.org/10.1016/j.buildenv.2020.107561DOI Listing

Publication Analysis

Top Keywords

energy consumption
36
occupant distribution
16
infected people
16
consumption covid-19
12
distribution patterns
12
energy
9
consumption
9
covid-19 infection
8
case study
8
university building
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!