Across the Southern Ocean, phytoplankton growth is governed by iron and light, while bacterial growth is regulated by iron and labile dissolved organic carbon (LDOC). We use a mechanistic model to examine how competition for iron between phytoplankton and bacteria responds to changes in iron, light, and LDOC. Consistent with experimental evidence, increasing iron and light encourages phytoplankton dominance, while increasing LDOC and decreasing light favors bacterial dominance. Under elevated LDOC, bacteria can outcompete phytoplankton for iron, most easily under lower iron. Simulations reveal that bacteria are major iron consumers and suggest that luxury storage plays a key role in competitive iron uptake. Under seasonal conditions typical of the Southern Ocean, sources of LDOC besides phytoplankton exudation modulate the strength of competitive interactions. Continued investigations on the competitive fitness of bacteria in driving changes in primary production in iron-limited systems will be invaluable in refining these results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816276PMC
http://dx.doi.org/10.1029/2020GL088369DOI Listing

Publication Analysis

Top Keywords

southern ocean
12
iron light
12
iron
9
phytoplankton bacteria
8
phytoplankton
6
bacteria
5
ldoc
5
resource colimitation
4
colimitation drives
4
drives competition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!