Amyotrophic lateral sclerosis (ALS) due to a fused in sarcoma (FUS) P525L mutation is characterized by a rapidly progressive course. Multifocal motor neuropathy (MMN) may resemble ALS in early stage and is associated with anti-ganglioside antibodies. A 38-year-old woman was admitted to our hospital because of progressive muscle weakness in the right limbs. She had mild mental retardation and minor deformities. Initially, we suspected MMN given the asymmetric muscle weakness and detection of anti-ganglioside antibodies. However, physical and electrophysiological tests did not support MMN, instead suggesting ALS. We confirmed a heterozygous P525L mutation and finally diagnosed this case as ALS due to an FUS mutation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8263198PMC
http://dx.doi.org/10.2169/internalmedicine.6168-20DOI Listing

Publication Analysis

Top Keywords

p525l mutation
12
muscle weakness
12
anti-ganglioside antibodies
12
amyotrophic lateral
8
lateral sclerosis
8
fus p525l
8
asymmetric muscle
8
sporadic amyotrophic
4
sclerosis fus
4
mutation
4

Similar Publications

Mutations in the gene ( ) are among the most frequently occurring genetic forms of amyotrophic lateral sclerosis (ALS). Early pathogenesis of -ALS involves impaired DNA damage response and axonal degeneration. However, it is still poorly understood how these gene mutations lead to selective spinal motor neuron (MN) degeneration and how nuclear and axonal phenotypes are linked.

View Article and Find Full Text PDF

Defects at the neuromuscular junction (NMJ) are among the earliest hallmarks of amyotrophic lateral sclerosis (ALS). According to the "dying-back" hypothesis, NMJ disruption not only precedes but also triggers the subsequent degeneration of motoneurons in both sporadic (sALS) and familial (fALS) ALS. Using human induced pluripotent stem cells (iPSCs), we show that the RNA-binding protein HuD (ELAVL4) contributes to NMJ defects and apoptosis in FUS-ALS.

View Article and Find Full Text PDF

ALS-FUS mutations cause abnormal PARylation and histone H1.2 interaction, leading to pathological changes.

Cell Rep

August 2024

Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany. Electronic address:

Article Synopsis
  • Scientists found that a bad version of a gene called FUS causes some really serious types of ALS, a disease that affects muscles and movement.
  • The FUS gene gets too tangled with another protein called H1.2, which can make the disease worse, but if scientists lower the levels of H1.2 or stop a process called PARylation, it can help reduce the problems caused by FUS.
  • In tiny worms called C. elegans, cutting down on H1.2 and a similar protein helped stop the FUS problems, showing us that learning about these relations can help us find treatments for ALS.
View Article and Find Full Text PDF

Aberrant condensation and localization of the RNA-binding protein (RBP) fused in sarcoma (FUS) occur in variants of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Changes in RBP function are commonly associated with changes in axonal cytoskeletal organization and branching in neurodevelopmental disorders. Here, we asked whether branching defects also occur in vivo in a model of FUS-associated disease.

View Article and Find Full Text PDF

Early defects at the neuromuscular junction (NMJ) are among the first hallmarks of the progressive neurodegenerative disease amyotrophic lateral sclerosis (ALS). According to the "dying back" hypothesis, disruption of the NMJ not only precedes, but is also a trigger for the subsequent degeneration of the motoneuron in both sporadic and familial ALS, including ALS caused by the severe pathogenic variant P525L. However, the mechanisms linking genetic and environmental factors to NMJ defects remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!