Wheat is one of the most important crops in Argentina and worldwide. One of the major diseases affecting the crop is the Fusarium Head Blight (FHB). It is an endemic disease caused mainly by Fusarium graminearum, the most common agent of FHB around the world. The infection is strongly influenced by environmental parameters and occurs mostly when there are favourable conditions of moisture and temperature during wheat anthesis or flowering. This destructive disease affects wheat, barley and other small grains and has the capability of destroying crops, causing great economic losses due to reduced grain quality, and the accumulation of significant levels of mycotoxins such as trichothecenes. The aim of this study was to evaluate the influence of temperature on mycotoxin biosynthesis, on three strains of F. graminearum of 15-ADON genotype and one of 3-ADON genotype, with different capacity of synthesizing DON, 3-ADON and 15-ADON. Trichothecene production of the strains at different temperatures (5, 10, 15, 20, 25, 30 and 35 °C) was evaluated after 7, 14, 21, 28 and 35 d of incubation. The optimum temperature to produce DON and 3-ADON was between 25 and 30 °C, but the maximum production of 15-ADON occurred at a lower temperature (10 °C) for all the strains. Conversely, the minimum production of DON and 3-ADON was recorded between 5 and 10 °C and of 15-ADON between 30 and 35 °C. A possible explanation for the similar accumulation of both acetyl derivatives by strains of different chemotype and genotypes could be that the acetyl derivatives biosynthesis is regulated by temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.funbio.2019.09.004 | DOI Listing |
As the common foodborne mycotoxins with the highest pollution rate, deoxynivalenol (DON, also named "vomitoxin") can harm the health of humans and animals by causing anorectic response. It has four congeners: 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), nivalenol (NIV), and fusarenon X (FX). These five mycotoxins have been associated with the detrimental effect on food intake.
View Article and Find Full Text PDFFood Res Int
September 2024
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China. Electronic address:
Toxins (Basel)
June 2024
College of Food Scienceand Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
Deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON) belong to type B trichothecenes that are widely detected in agricultural products as one of the most common classes of mycotoxins. In the present study, we aimed to characterize the alteration of lipid metabolism in normal human hepatocytes by poisoning with DON and its acetylated derivatives. After verifying the hepatotoxicity of the three toxins, DON, 15-ADON, and 3-ADON, the mRNA expression was determined by transcriptomics, and the results showed that DON and 15-ADON had a significant regulatory effect on the transcriptome, in which glycerophospholipid metabolism pathway and phospholipase D signaling pathways have not been reported in studies of DON and its acetylated derivatives.
View Article and Find Full Text PDFJ Hazard Mater
August 2024
Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China. Electronic address:
Front Plant Sci
April 2024
Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL, United States.
, the causal agent of Fusarium head blight (FHB), produces various mycotoxins that contaminate wheat grains and cause profound health problems in humans and animals. Deoxynivalenol (DON) is the most common trichothecene found in contaminated grains. Our previous study showed that Arabidopsis-expressing trichothecene 3--acetyltransferase () converted DON to 3-acetyldeoxynivalenol (3-ADON) and excreted it outside of Arabidopsis cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!