Infectious bursal disease (IBD), an acute, highly contagious, and immunosuppressive avian disease, is caused by infectious bursal disease virus (IBDV) and constitutes one of the main threats to the poultry industry, worldwide. This study was performed to isolate and characterize IBDV isolates circulating in Tunisia. Eleven collected bird samples were identified using an SYBR Green-based one-step real-time reverse transcriptase polymerase chain reaction. The full-length genome sequencing of 7 of the 11 IBDV isolates has been realized. VP2 gene data showed limited sequence variations for all the 7 tested samples. The few nucleotide changes were silent and the deduced amino acid sequences were identical with the exception of a unique and characteristic nonsilent mutation (C) detected for the TN37/19 isolate, with a change of amino acid (L) to (F) at position 401. In addition, the serine-rich heptapeptide SWSASGS, characteristic of virulent IBDV, as well the amino acid residues, conserved in most very virulent IBDV (vvIBDV) strains, were detected in all the Tunisian tested isolates. Nucleotide sequences of VP5 gene revealed the presence of 5 substitutions leading to changes in the amino acid sequences of the virus. Two of these mutations were unique and characteristic of the Tunisian isolates. Besides, the alternative AUG start codon, characteristic of vvIBDV, was observed in all obtained VP5 gene sequences. The Tunisian protein sequences of VP1 showed E242 and the TDN triplet at positions 145, 146, and 147, a motif specific of vvIBDV. Phylogenetic analyses of the 5 genes confirmed the sequence alignment results and showed that the Tunisian strains are closely related to the very virulent Algerian IBDV strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7858174 | PMC |
http://dx.doi.org/10.1016/j.psj.2020.11.035 | DOI Listing |
J Phys Chem A
January 2025
Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.
Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Chemistry, Scripps Research, La Jolla, CA, USA.
Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!