The effect of pesticides on the mtDNA integrity and bioenergetic properties of potato mitochondria.

Pestic Biochem Physiol

Voronezh State University of Engineering Technologies, Voronezh 394036, Russia; Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh 394018, Russia.

Published: February 2021

Potato (Solanum tuberosum L.) is one of the most common crops in the world, and it is very susceptible to a wide range of pests such as insects and fungi. The use of pesticides often results in the suppression of seed germination and plant growth, in particular, due to their effect on the respiratory chain of mitochondria. There are numerous studies of the effect of pesticides on animal mitochondria, but their interference with the electron transport in plant mitochondria is not well documented. We present the data showing that a number of pesticides inhibit electron flow, and other pesticides uncouple the respiratory chain. Among the studied pesticides engaging the alternative pathways of electron transport, dithianon led to an increase in the rate of HO production but did not cause a strong increase in the amount of mtDNA damage as compared to other pesticides. In general, the main negative effect of the studied pesticides is manifested in a decrease of membrane potential with the maintenance of the rate of oxygen consumption and a low rate of HO production. The mtDNA damage is caused mainly by pesticides belonging to the pyrethroid class and remains minor as compared to its damage in animals. Our data indicate that the respiratory chain of plant mitochondria is more resistant to pesticides as compared to animal mitochondria due to the presence of the alternative pathways of electron transport.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2020.104764DOI Listing

Publication Analysis

Top Keywords

respiratory chain
12
electron transport
12
pesticides
10
animal mitochondria
8
plant mitochondria
8
studied pesticides
8
alternative pathways
8
pathways electron
8
rate production
8
mtdna damage
8

Similar Publications

Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.

View Article and Find Full Text PDF

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

Ge Epitaxy at Ultralow Growth Temperatures Enabled by a Pristine Growth Environment.

ACS Appl Electron Mater

December 2024

Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria.

Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.

View Article and Find Full Text PDF

Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices.

ACS Cent Sci

December 2024

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!