Boric acid was orally toxic to different instars of Blattella germanica (L.) (Blattodea: Blattellidae) and caused dysbiosis of the, gut microbiota.

Pestic Biochem Physiol

Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, People's Republic of China. Electronic address:

Published: February 2021

Boric acid, a well-established chemical insecticide, has a good control effect on various types of cockroaches. In this study, we investigated the oral virulence effect of boric acid on German cockroach (Blattella germanica) of various instars and characterized its effect on the gut microbiota by high-throughput sequencing technology. The results of an oral toxicity test showed that the toxicity of boric acid was positively correlated with its concentration and negatively correlated with the instar of cockroach nymphs. The 1-3 instar nymphs showed the strongest sensitivity to boric acid, which exhibited a median lethal time of only 3.16 d, while the 6-7 instar nymphs showed the weakest sensitivity, and exhibited a median lethal time of 10.15 d. There was no significant difference between male and female insects regarding their sensitivity to boric acid. Oral treatment of boric acid resulted in severe dysbiosis in cockroaches, the relative abundances of Bacteroides, which can degrade a variety of complex macromolecules, and Enterococcus, which can inhibit pathogenic microorganisms, were significantly reduced, while the relative abundance of the opportunistic pathogenic bacterium Weissella was significantly increased. It was speculated that dysbiosis of gut microbiota might accelerate the toxicity of boric acid on German cockroaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pestbp.2020.104756DOI Listing

Publication Analysis

Top Keywords

boric acid
32
gut microbiota
12
boric
8
blattella germanica
8
dysbiosis gut
8
acid german
8
toxicity boric
8
instar nymphs
8
sensitivity boric
8
exhibited median lethal time
8

Similar Publications

Fluorescent distinguishing flavonoid glycosides against aglycones based on the selective recognization of boric acid-functional Eu(III)-organic framework.

Talanta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China. Electronic address:

Flavonoid glycosides are formed by dehydration condensation of aglycones and sugar molecules. Therefore, discrimination of flavonoid glycosides from their corresponding aglycones is a challenging task because they contain the same aglycone part in their molecular structures. Herein, boric acid-functional Eu(III)-organic framework (BA-Eu-MOF) was applied to discriminate flavonoid glycosides including baicalin (Bai), wogonoside (Wog), rutin (Rut), puerarin (Pue), quercitrin (Que) and astragalin (Ast) from their corresponding aglycones for the first time.

View Article and Find Full Text PDF

Cryogels were fabricated by combining polyvinyl alcohol (PVA) and chitosan of varying molecular weights (Mw). In this study, the effects of chitosan Mw, types of boron-containing molecules on network formation, and boron release rate in resulted cryogels were investigated. The PVA/chitosan blend maintained a constant 4.

View Article and Find Full Text PDF

The durability and flame retardancy of cotton fabrics have been the focus of long-term research. In this paper, a method for preparing flame retardants through the direct modification of biomass was proposed, and the durable flame retardant of homologous cottonseed meal modified biomass flame retardants for cotton fabrics was achieved through biomass composition analysis and modeling. In this study, a cottonseed meal-phosphoric acid-boric acid synergistic bio-based flame retardant (CPB) was synthesized and characterized.

View Article and Find Full Text PDF

A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors.

Carbohydr Polym

March 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing 100029, China. Electronic address:

Conductive hydrogels have emerged as excellent candidates for the design and construction of flexible wearable sensors and have attracted great attention in the field of wearable sensors. However, there are still serious challenges to integrating high stretchability, self-healing, self-adhesion, excellent sensing properties, and good biocompatibility into hydrogel wearable devices through easy and green strategies. In this paper, multifunctional conductive hydrogels (PCGB) with good biocompatibility, high tensile (1694 % strain), self-adhesive, and self-healing properties were fabricated by incorporating boric acid (BA) and glucose (Glu) simultaneously into polyacrylic acid (PAA) and chitosan (CS) polymer networks using a simple one-pot polymerization method.

View Article and Find Full Text PDF

Currently, the rising prevalence of resistant species, particularly , as well as non-albicans isolates such as and , represent challenges in their management. In this review, we aimed to explore the current management of fluconazole-resistant vulvovaginal candidiasis (FRVVC). Identified studies focused on alternative antifungal therapies, including boric acid, nystatin, and newer agents like oteseconazole and ibrexafungerp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!