This paper is concerned with the distribution of earthquakes, particularly their depths, with the temperature of the material in which they occur, and with the significance of both for the rheology and deformation of the continental lithosphere. Earthquakes on faults are generated by the sudden release of elastic energy that accumulates during slow plate motions. The nonlinear high-temperature creep that localizes such energy accumulation is, in principle, well understood and can be described by rheological models. But the same is not true of seismogenic brittle failure, the main focus of this paper, and severely limits the insights that can be obtained by simulations derived from geodynamical modelling of lithosphere deformation. Through advances in seismic tomography, we can now make increasingly detailed maps of lithosphere thickness on the continents. The lateral variations are dramatic, with some places up to 300 km thick, and clearly relate to the geological history of the continents as well as their present-day deformation. Where the lithosphere thickness is about 120 km or less, continental earthquakes are generally confined to upper crustal material that is colder than about 350°C. Within thick lithosphere, and especially on its edges, the entire crust may be seismogenic, with earthquakes sometimes extending into the uppermost mantle if the Moho is colder than 600°C, but the continental mantle is generally aseismic. Earthquakes in the continental lower crust at 400-600°C require the crust to be anhydrous and so are a useful guide or proxy to both composition and strength. These patterns and correlations have important implications for the geological evolution of the continents. They can be seen to have influenced features as diverse as the location of post-collisional rifting; cratonic basin formation; the location, origin and timing of granulite-facies metamorphism; and the formation, longevity and strength of cratons. In addition, they have important consequences for earthquake hazard assessment in the slowly deforming edges and interiors of continental shields or platforms, where the large seismogenic thickness can host very large earthquakes. This article is part of a discussion meeting issue 'Understanding earthquakes using the geological record'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2019.0412 | DOI Listing |
Parasitol Int
January 2025
Faculty of Environmental Sciences, The University of Shiga Prefecture, Shiga, Japan. Electronic address:
Lake Biwa, with its long geological history, has given rise to many endemic species, but only four endemic parasites are known from Lake Biwa and connected water areas. They are considered to have co-evolved with their endemic host species or to have become adapted to the pelagic ecosystem unique to Lake Biwa. The number of parasite species introduced into this water system is rising, facilitated not only by the introduction of new species but also through genetic analyses that have revealed new information about previously known species.
View Article and Find Full Text PDFPLoS One
January 2025
Archaeology, Environmental Changes and Geo-Chemistry, Vrije Universiteit Brussel, Belgium.
Megalithism has been repetitively tied to specialised herding economies in Iberia, particularly in the mountainous areas of the Basque Country. Legaire Sur, in the uplands of Álava region, is a recently excavated passage tomb (megalithic monument) that held a minimum number of 25 individuals. This study analysed the carbon, nitrogen, oxygen, and strontium isotope ratios of 18 individuals, in a multi-tissue sampling study (successional tooth enamel sampling, incremental dentine sampling, and bulk bone collagen sampling).
View Article and Find Full Text PDFSci Rep
January 2025
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Bologna, Bologna, Italy.
Heterogeneous fault architecture affects crustal seismotectonics and fluid migration. When studying it, we commonly rely on static conceptual models that generally overlook the absolute time dimension of fault (re)activation. Heterogenous faults, however, represent the end-result of protracted, cumulative and intricate deformation histories.
View Article and Find Full Text PDFNat Geosci
January 2025
Department of Earth Sciences 'Ardito Desio', Università degli Studi di Milano, Milan, Italy.
Atmospheric CO is thought to play a fundamental role in Earth's climate regulation. Yet, for much of Earth's geological past, atmospheric CO has been poorly constrained, hindering our understanding of transitions between cool and warm climates. Beginning ~370 million years ago in the Late Devonian and ending ~260 million years ago in the Permian, the Late Palaeozoic Ice Age was the last major glaciation preceding the current Late Cenozoic Ice Age and possibly the most intense glaciation witnessed by complex lifeforms.
View Article and Find Full Text PDFEcol Appl
January 2025
U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Jackson, Mississippi, USA.
Subsidy-stress gradients offer a useful framework for understanding ecological responses to perturbation and may help inform ecological metrics in highly modified systems. Historic, region-wide shifts from bottomland hardwood forest to row crop agriculture can cause positively skewed impact gradients in alluvial plain ecoregions, resulting in tolerant organisms that typically exhibit a subsidy response (increased abundance in response to environmental stressors) shifting to a stress response (declining abundance at higher concentrations). As a result, observed biological tolerance in modified ecosystems may differ from less modified regions, creating significant challenges for detecting biological responses to restoration efforts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!