Desilylation Induced by Metal Fluoride Nanocrystals Enables Cleavage Chemistry In Vivo.

J Am Chem Soc

Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Published: February 2021

Metal fluoride nanocrystals are widely used in biomedical studies owing to their unique physicochemical properties. The release of metal ions and fluorides from nanocrystals is intrinsic due to the solubility equilibrium. It used to be considered as a drawback because it is related to the decomposition and defunction of metal fluoride nanocrystals. Many strategies have been developed to stabilize the nanocrystals, and the equilibrium concentrations of fluoride are often <1 mM. Here we make good use of this minimum amount of fluoride and unveil that metal fluoride nanocrystals could effectively induce desilylation cleavage chemistry, enabling controlled release of fluorophores and drug molecules in test tubes, living cells, and tumor-bearing mice. Biocompatible PEG (polyethylene glycol)-coated CaF nanocrystals have been prepared to assay the efficiency of desilylation-induced controlled release of functional molecules. We apply the strategy to a prodrug activation of monomethyl auristatin E (MMAE), showing a remarkable anticancer effect, while side effects are almost negligible. In conclusion, this desilylation-induced cleavage chemistry avails the drawback on empowering metal fluoride nanocrystals with a new function of perturbing or activating for further biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c10399DOI Listing

Publication Analysis

Top Keywords

metal fluoride
12
fluoride nanocrystals
12
nanocrystals
5
desilylation induced
4
metal
4
induced metal
4
fluoride
4
nanocrystals enables
4
enables cleavage
4
cleavage chemistry
4

Similar Publications

Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries.

ACS Nano

January 2025

Department of Physics, JC STEM Lab of Energy and Materials Physics, City University of Hong Kong, Hong Kong 999077, P. R. China.

Solid polymer electrolytes (SPEs) are promising candidates for lithium metal batteries (LMBs) owing to their safety features and compatibility with lithium metal anodes. However, the inferior ionic conductivity and electrochemical stability of SPEs hinder their application in high-voltage solid-state LMBs (HVSSLMBs). Here, a strategy is proposed to develop a dual-anion-rich solvation structure by implementing ferroelectric barium titanate (BTO) nanoparticles (NPs) and dual lithium salts into poly(vinylidene fluoride) (PVDF)-based SPEs for HVSSLMBs.

View Article and Find Full Text PDF

Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.

Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.

View Article and Find Full Text PDF

Although fluorescence analysis methods are widely used in pesticide residue detection, improving their sensitivity and selectivity remains a challenge. This paper presents a novel ratio fluorescence sensor based on the molecular imprinting polymers (MIPs) and metal-enhanced fluorescence for visual detection of dicamba (DIC). Calcium fluoride (CaF) quantum dots (QDs) were immobilized on the surface of Ag@MIPs, resulting in a blue fluorescence response signal (Ag@MIPs-CaF).

View Article and Find Full Text PDF

Atomic layer deposition (ALD) is a popular method of coating battery electrodes with metal oxides for improved cycling stability. While significant research has focused on the interaction between the reactive metal alkyl precursor and the electrode materials, little is known about the reactivity of the precursor toward other components of the battery electrode, such as the polymer binder. This study presents a combined computational and experimental investigation of the reaction between the popular polyvinylidene (PVDF) binder and the trimethylaluminum (TMA) precursor commonly used for coating AlO by ALD.

View Article and Find Full Text PDF

Selective Scandium Elution from DEHPA-Impregnated Ion-Exchange Resin After Metal Loading from Acidic Chloride Solutions.

Materials (Basel)

December 2024

Laboratory of Metallurgy, School of Mining and Metallurgical Engineering, National Technical University of Athens, Iroon Polytechniou 9 Str., Zografou Campus, 15773 Athens, Greece.

This paper investigates the elution behavior of scandium from DEHPA (Di-(2-ethylhexyl) phosphoric acid)-impregnated resins that proceed with metal loading from acidic chloride solutions. DEHPA resins stem from their recognized selectivity for Sc extraction from acidic solutions. This study focuses on the elution process after ion-exchange extraction and examines various elution systems to achieve selective Sc recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!