Background/aim: Triple-negative breast cancer (TNBC) remains difficult to treat and new molecular targets are needed. Here, we investigated the impact of glycosyltransferase genes on TNBC patient survival.
Patients And Methods: mRNA expression levels of 101 glycosyltransferase genes in TNBC patients were compared for correlation with patient survival using The Cancer Genome Atlas data. An antibody to β-3-N-acetylgluco-saminyltransferase 8 (B3GNT8) was applied to investigate B3GNT8 protein distribution and expression levels in 23 TNBC surgical specimens.
Results: B3GNT8 mRNA levels inversely correlated with relapse-free survival (p<0.01) and overall survival (p<0.05) in TNBC patients. Anti-B3GNT8 antibody binding was observed as dots in the cytoplasm of cancer cells. These dots were supposed to correspond to B3GNT8 protein in tumour cells, but their number was smaller in relapsed patients than in non-relapsed patients.
Conclusion: B3GNT8 mRNA expression levels in TNBC tumour tissues are potentially useful in distinguishing patients with favourable and poor clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.14837 | DOI Listing |
Photochem Photobiol Sci
January 2025
Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.
Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, 1398 Shimamichou, Kita-Ku, Niigata, Japan.
Purpose: Identification of the molecular subtypes in breast cancer allows to optimize treatment strategies, but usually requires invasive needle biopsy. Recently, non-invasive imaging has emerged as promising means to classify them. Magnetic resonance imaging is often used for this purpose because it is three-dimensional and highly informative.
View Article and Find Full Text PDFAdv Biol (Weinh)
January 2025
School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
Triple-negative breast cancer (TNBC) is the most lethal and aggressive breast cancer among all the breast cancer subtypes. Despite several attempts, to date, there is an extensive lack of therapeutic intervention. Hence, there is a dire need for an effective biomarker to timely diagnose TNBC.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, P. R. China.
Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14B, Tartu, 50411, Estonia.
In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!