The submandibular ganglion (SMG) contains parasympathetic neurons which innervate the submandibular gland. In this study, immunohistochemistry for vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), choline acetyltransferase (ChAT), dopamine β-hydroxylase (DBH), tyrosine hydroxylase (TH), and the transient receptor potential cation channel subfamily V members 1 (TRPV1) and 2 (TRPV2) was performed on the human SMG. In the SMG, 17.5 % and 8.9 % of parasympathetic neurons were immunoreactive for VIP and TRPV2, respectively. SMG neurons mostly contained ChAT- and DBH-immunoreactivity. In addition, subpopulations of SMG neurons were surrounded by VIP (69.6 %)-, TRPV2 (54.4 %)- and DBH (9.5 %)-immunoreactive (-ir) nerve fibers. SMG neurons with pericellular VIP- and TRPV2-ir nerve fibers were significantly larger than VIP- and TRPV2-ir SMG neurons, respectively. Other neurochemical substances were rare in the SMG. In the human submandibular gland, TRPV1- and TRPV2-ir nerve fiber profiles were seen around blood vessels. Double fluorescence method also demonstrated that TRPV2-ir nerve fiber profiles were located around myoepithelial and acinar cells in the submandibular gland. VIP and TRPV2 are probably expressed by both pre- and post-ganglionic neurons innervating the submandibular and sublingual glands. VIP, DBH and TRPV2 may have functions about regulation of salivary components in the salivary glands and neuronal activity in the SMG.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tice.2021.101496 | DOI Listing |
Brain Struct Funct
December 2024
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2G4, Canada.
Much brain imaging work has underscored the functional connections among the inferior frontal gyrus (IFG; articulation), supramarginal gyrus (SMG; letter-sound correspondence), superior temporal gyrus (STG; sound) and fusiform gyrus (FFG; print) during basic reading processes. This reading network supports and coordinates the complex processes that contribute to successful reading. In line with the Hebbian notion that 'neurons that fire together, wire together' we examined cortical thickness among these regions and the extent to which these regions showed structural relationships in average and impaired readers.
View Article and Find Full Text PDFNature
November 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
The autonomic nervous system orchestrates the functions of the brain and body through the sympathetic and parasympathetic pathways. However, our understanding of the autonomic system, especially the sympathetic system, at the cellular and molecular levels is severely limited. Here we show topological representations of individual visceral organs in the major abdominal sympathetic ganglion complex.
View Article and Find Full Text PDFThe autonomic nervous system orchestrates the brain and body functions through the sympathetic and parasympathetic pathways. However, our understanding of the autonomic system, especially the sympathetic system, at the cellular and molecular levels is severely limited. Here, we show unique topological representations of individual visceral organs in the major abdominal sympathetic ganglion complex.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
J Neurosci Methods
December 2024
Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Anesthesiology and Pain medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea. Electronic address:
Background: In vitro models tailored for spinal cord ischemia-reperfusion injury are pivotal for investigation of the mechanisms underlying spinal cord injuries. We conducted a two-phased study to identify the optimal conditions for establishing an in vitro model of spinal cord ischemia-reperfusion injury using primary rat spinal motor neurons.
New Method: In the first phase, cell cultures were subjected to oxygen deprivation (OD) only, glucose deprivation (GD) only, or simultaneous deprivation of oxygen and glucose [oxygen-glucose deprivation (OGD)] for different durations (1, 2, and 6 h).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!