The introduction of heavy metal-free biomass into the sewage sludge (SS) pyrolysis can effectively improve the biochar properties and reduce the bioavailability and toxicity of heavy metals (HMs) in blended biochar. Herein, this study aimed to understand the biochar properties and associated environmental risks of HMs, by comparing the residual contents from the co-pyrolysis of SS with various organic fractions of municipal solid waste (OFMSW) at 550 °C and pyrolysis alone at different temperatures between 350 and 750 °C. The results indicated that, compared with SS pyrolysis alone, co-pyrolysis of SS with various OFMSW (except PVC) lead to lower biochar yields but with higher pH values (increased between 21.80% and 31.70%) and carbon contents (raised between 33.45% and 48.22%) in blended biochars, and the chemical speciation analysis suggested that co-pyrolysis further promoted the HMs transformation into more stable forms which significantly reduce the associated environmental risk of HMs in the blended biochars (the values of RI lower than 55.80). The addition of PVC, however, impeded biochar properties and compromised HMs immobilization during SS pyrolysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.125200 | DOI Listing |
Sci Rep
January 2025
School of Emergency and Management, Changchun Institute of Technology, No. 3066 Tongzhi Street, Changchun, 130021, Jilin, China.
Improving water retention, erosion resistance and nutrients in desert areas is essential for ecological sustainability. This study evaluated the effects of biochar, polyethylene oxide (PEO), and seaweed fertilizer on the properties of desert sandy soil, focusing on water retention, erosion resistance, and soil nutrients. The sandy soil used in the study was taken from the Tengger Desert in Gansu, China, and an orthogonal experimental design was used to select three different proportions of biochar, PEO, and seaweed fertilizer.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao, 266071, China.
Improving the quality of degraded coastal saline-alkali soil and promoting plant growth are key challenges in the restoration of ecological functions in coastal regions. Organic ameliorants such as effective microbial (EM) agent, biochar, and organic compost have been proposed as sustainable solutions, but limited research has explored the combined effects of these amendments. This study investigates five organic improvement strategies: individual applications of EM, corn straw biochar (CSB), and sewage sludge-reed straw compost (COM), along with combined treatments of CSB + EM and COM + EM, on Sesbania growth in a pot experiment.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.
The electrochemical properties of chars have been recently described, positioning chars as active participants in microbial redox processes through functional groups, aromatic structures, redox-active metals, and radicals. While bench-scale studies have advanced mechanistic understanding of char's behavior and potential effects, translating these findings to complex ecosystems remains challenging. This is mainly due to the complexities of microbial communities and the unique properties of various ecosystems.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
spp. are soil-borne pathogens that cause damping-off and root rot diseases in many plant species such as cucumber. In the current study, the effect of dried roots-stems and leaves of (Sprengel) R.
View Article and Find Full Text PDFToxics
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China.
Hexavalent chromium (Cr(VI)) contamination in soil presents significant risks due to its high toxicity to both the environment and human health. Renewable, low-cost natural materials offer promising solutions for Cr(VI) reduction and soil remediation. However, the effects of unmodified tea leaves and tea-derived biochar on chromium-contaminated soils remain inadequately understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!