Mercury and methylmercury in China's lake sediments and first estimation of mercury burial fluxes.

Sci Total Environ

Ministry of Education Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:

Published: May 2021

Lake sediments are key materials for mercury deposition and methylation. To understand the mercury concentrations in China's lakes, 100 lake surface sediment samples were collected from 35 lakes in 2014. Total mercury (THg), methylmercury (MeHg) concentrations and the annual Hg burial rates in lake sediments were measured. THg and MeHg concentrations in the sediment ranged from 13.6 to 1488 ng‧g and 0.05 to 1.70 ng‧g, respectively, and urban lakes reported most high values, indicating direct anthropogenic inputs. The Inner Mongolia-Xinjiang Region (MX) and Qinghai-Tibet Plateau Region (QT) reported relatively lower mercury burial rates, while the Eastern Plain Region (EP), Northeast Mountain and Plain Region (NE), and Yunnan-Guizhou Plateau Region (YG) reported higher mercury burial rates. Regional variances of THg burial fluxes were dominated by atmospheric deposition, terrestrial input, and sediment accumulation rates in different lakes. In 2014, the estimated average THg burial rate in China's lakes was 139 μg‧m‧yr, comparable to the average in mid-latitude North America in recent years; however, due to China's much smaller lake area relative to NA, the annual THg burial flux in China was much lower than that in North America. EP and NE, where most freshwater aquatic products in China are harvested, accounted for 58.2% and 22.9%, respectively, of the THg burial flux. High sedimentary MeHg concentrations and MeHg:THg ratios were reported in most of the NE but low MeHg concentrations and MeHg:THg ratios were reported in EP. MeHg concentrations and MeHg:THg ratios were positively correlated with water COD levels and negatively correlated with average temperature. The results of this study indicate that in addition to the adjacent seas, lake sediments are an important mercury sink in China's aquatic environment, which could cause health risks due to MeHg intake, especially in NE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145338DOI Listing

Publication Analysis

Top Keywords

mehg concentrations
20
lake sediments
16
thg burial
16
mercury burial
12
burial rates
12
concentrations mehgthg
12
mehgthg ratios
12
mercury
8
burial
8
burial fluxes
8

Similar Publications

Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing.

View Article and Find Full Text PDF

Analysis of biokinetic parameters reveals patterns in mercury accumulation across aquatic species.

Sci Total Environ

December 2024

Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States of America.

Article Synopsis
  • Mercury is a toxic substance that accumulates in fish, particularly in its organic form, methylmercury (MeHg), which poses risks to human health through contaminated fish consumption.
  • Understanding how mercury accumulates in aquatic species requires analyzing several biokinetic parameters, including uptake rate, assimilation efficiency, and efflux rate, which were studied across 38 fish and 34 aquatic invertebrate species, yielding 502 total data points.
  • The study found that the form of mercury and various environmental factors like water type and organism weight significantly influenced these parameters, highlighting differences between fish and invertebrates, and challenging previous assumptions about the impact of environmental conditions on mercury accumulation in aquatic ecosystems.
View Article and Find Full Text PDF

Anthropometry provides a non-invasive technique for evaluating growth and obesity and serves as an indicator of health status. This cross-sectional study aims to investigate the association of internal arsenic (As), cadmium (Cd), total mercury (THg), methylmercury (MeHg), and lead (Pb) exposure with anthropometric parameters, including obesity, in adolescents. Participants (N = 320) were children aged 10-14 years (mean 11.

View Article and Find Full Text PDF

Optimization of the Determination of Methylmercury in Solid Matrix Samples.

Bull Environ Contam Toxicol

December 2024

State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.

Accurate quantification of neurotoxic methylmercury (MeHg) in environmental samples is crucial for exploring its formation, behaviors, and risks. Here, we developed and optimized an alkaline digestion-manual purge trap/gas chromatography-cold atomic fluorescence spectrometry (GC-CVAFS) method for the quantification of MeHg in solid matrix samples such as sediments, soils or sedimentary rocks. The alkaline digestion method yielded higher recoveries of MeHg than the acid extraction method.

View Article and Find Full Text PDF

Potential impact of tide-regulation barriers on the formation of methylmercury in the Venice Lagoon (Italy).

J Hazard Mater

December 2024

Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland. Electronic address:

Methylmercury (MeHg), a neurotoxic pollutant, is formed mainly under anaerobiosis. The "Modulo Sperimentale Elettromeccanico" (MOSE), built to temporarily close the Venice Lagoon and protect the city from flooding, induces changes in the hydrological regime, reducing water circulation and decreasing in the dissolved oxygen concentrations of the lagoon. Our study shows the potential changes in sediment and overlying water physico-chemistry in a simulated MOSE closing-event by incubating sediment cores for 48 h in the laboratory and deploying benthic chambers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!