Lake sediments are key materials for mercury deposition and methylation. To understand the mercury concentrations in China's lakes, 100 lake surface sediment samples were collected from 35 lakes in 2014. Total mercury (THg), methylmercury (MeHg) concentrations and the annual Hg burial rates in lake sediments were measured. THg and MeHg concentrations in the sediment ranged from 13.6 to 1488 ng‧g and 0.05 to 1.70 ng‧g, respectively, and urban lakes reported most high values, indicating direct anthropogenic inputs. The Inner Mongolia-Xinjiang Region (MX) and Qinghai-Tibet Plateau Region (QT) reported relatively lower mercury burial rates, while the Eastern Plain Region (EP), Northeast Mountain and Plain Region (NE), and Yunnan-Guizhou Plateau Region (YG) reported higher mercury burial rates. Regional variances of THg burial fluxes were dominated by atmospheric deposition, terrestrial input, and sediment accumulation rates in different lakes. In 2014, the estimated average THg burial rate in China's lakes was 139 μg‧m‧yr, comparable to the average in mid-latitude North America in recent years; however, due to China's much smaller lake area relative to NA, the annual THg burial flux in China was much lower than that in North America. EP and NE, where most freshwater aquatic products in China are harvested, accounted for 58.2% and 22.9%, respectively, of the THg burial flux. High sedimentary MeHg concentrations and MeHg:THg ratios were reported in most of the NE but low MeHg concentrations and MeHg:THg ratios were reported in EP. MeHg concentrations and MeHg:THg ratios were positively correlated with water COD levels and negatively correlated with average temperature. The results of this study indicate that in addition to the adjacent seas, lake sediments are an important mercury sink in China's aquatic environment, which could cause health risks due to MeHg intake, especially in NE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.145338 | DOI Listing |
Environ Res
December 2024
College of Resources and Environment, Southwest University, Chongqing, 400715, China.
Sulfate-driven anaerobic oxidation of methane (AOM) and anaerobic digestion (AD) with municipal wastewater sludge containing heavy metals may provide favorable conditions for the biogeochemical transformation of mercury (Hg) by methanogens and methanotrophs. However, it remains largely unclear what Hg-methylators functioned and what role Methanosarcina played in these processes. Here, we performed sulfate-driven AOM following AD with Hg-containing wastewater sludge and investigated the role of microbes, especially Methanosarcina, in the biogeochemical transformation of Hg based on 16S rRNA amplicon and metatranscriptomic sequencing.
View Article and Find Full Text PDFSci Total Environ
December 2024
Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, TN, United States of America.
Biol Trace Elem Res
December 2024
Faculty of Public Health, Slovak Medical University, Bratislava, 833 03, Slovakia.
Anthropometry provides a non-invasive technique for evaluating growth and obesity and serves as an indicator of health status. This cross-sectional study aims to investigate the association of internal arsenic (As), cadmium (Cd), total mercury (THg), methylmercury (MeHg), and lead (Pb) exposure with anthropometric parameters, including obesity, in adolescents. Participants (N = 320) were children aged 10-14 years (mean 11.
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2024
State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
Accurate quantification of neurotoxic methylmercury (MeHg) in environmental samples is crucial for exploring its formation, behaviors, and risks. Here, we developed and optimized an alkaline digestion-manual purge trap/gas chromatography-cold atomic fluorescence spectrometry (GC-CVAFS) method for the quantification of MeHg in solid matrix samples such as sediments, soils or sedimentary rocks. The alkaline digestion method yielded higher recoveries of MeHg than the acid extraction method.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland. Electronic address:
Methylmercury (MeHg), a neurotoxic pollutant, is formed mainly under anaerobiosis. The "Modulo Sperimentale Elettromeccanico" (MOSE), built to temporarily close the Venice Lagoon and protect the city from flooding, induces changes in the hydrological regime, reducing water circulation and decreasing in the dissolved oxygen concentrations of the lagoon. Our study shows the potential changes in sediment and overlying water physico-chemistry in a simulated MOSE closing-event by incubating sediment cores for 48 h in the laboratory and deploying benthic chambers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!